Author Index

Ampère, A.-M., 12, 117
Anaximenes, 6
Anderson, C. D., 245
Anderson, M. H., 168
Archimedes, 88
Aristarchus, 88
Aristotle, 2, 50, 89
Aston, F. W., 211
Avogadro, A., 8–10
Bahcall, J. N., 249
Bulmer, J., 81
Becquerel, A. H., 71, 72
Bernoulli, D., 4, 5, 33
Blatt, J. M., 233
Bohr, N., 79–83, 139, 244
Boltzmann, L., 9, 33, 40
Bom, M., 66, 131, 132, 179
Bose, S. N., 167
Boyle, R., 2, 3, 5
Brackett, F. S., 81
Bragg, L., 127
Bragg, W. H., 127
Brecht, G., 218
Brillouin, L., 236
Brown, R., 51, 55
Brush, S. G., 22, 33, 40
Buridan, J., 89
Carlisle, A., 13
Carnot, S., 16, 22, 25
Cassen, B., 218
Cavendish, H., 6
Chadwick, J., 212, 213, 244
Charles, J., 3, 26
Christensen, J. H., 36
Clausius, R., 4–6, 9, 17, 19, 20, 22, 27, 32–34, 38, 49
Cohan, C., Jr., 247
Compton, A. H., 71, 113
Condon, E. U., 218, 233
Copernicus, N., 89
Cornell, E., 168
Coulomb, C. A., 11, 76
Cronin, J. W., 36
Curie, M., 71, 212, 235
Dalton, J., 7–9, 75
Davis, R., Jr., 249
Davison, C., 126, 127
Davy, H., 13
Democritus, 1
Dirac, P. M. A., 124, 161, 167, 198, 206, 244, 245, 250, 271, 276, 291
Dyson, F., 261
Ellis, C. D., 244, 247
Empedocles, 6
Epicurus, 1
Faraday, M., 12, 13, 117
Feenberg, E., 218
Fermi, E., xiv, 24, 167, 224, 235, 240, 245, 250, 279
Feynman, R., 261, 283
Fierz, M., 167, 275
Fitch, V. L., 36
Fitzgerald, G. F., 94, 95, 104
Flanders, H., 120
Fock, V., 260
Fourier, J., 16
Franklin, B., 10
Fraunhofer, J., 77
French, J. B., 161, 205
Friedman, J., 248

303
**Author Index**

<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galilei, G.</td>
<td>89</td>
</tr>
<tr>
<td>Gamov, G.</td>
<td>233, 246</td>
</tr>
<tr>
<td>Garwin, R.</td>
<td>248</td>
</tr>
<tr>
<td>Gay-Lussac, J. L.</td>
<td>3, 5, 8</td>
</tr>
<tr>
<td>Geiger, H.</td>
<td>72, 73, 234</td>
</tr>
<tr>
<td>Geissler, H. J.</td>
<td>14</td>
</tr>
<tr>
<td>Germer, L.</td>
<td>126, 127</td>
</tr>
<tr>
<td>Gibbs, J. W.</td>
<td>33, 35</td>
</tr>
<tr>
<td>Gilbert, W.</td>
<td>11</td>
</tr>
<tr>
<td>Goeppert-Mayer, M.</td>
<td>228</td>
</tr>
<tr>
<td>Goudsmit, S.</td>
<td>151, 156, 170</td>
</tr>
<tr>
<td>Gove, N. B.</td>
<td>214</td>
</tr>
<tr>
<td>Green, G.</td>
<td>177</td>
</tr>
<tr>
<td>Gurney, R. W.</td>
<td>233</td>
</tr>
<tr>
<td>Haefstad, L.</td>
<td>218</td>
</tr>
<tr>
<td>Harmer, D. S.</td>
<td>249</td>
</tr>
<tr>
<td>Hartee, E.</td>
<td>220</td>
</tr>
<tr>
<td>Hartree, D.</td>
<td>170</td>
</tr>
<tr>
<td>Heath, T. L.</td>
<td>88</td>
</tr>
<tr>
<td>Heisenberg, W.</td>
<td>124, 147, 225, 291</td>
</tr>
<tr>
<td>Heitler, W.</td>
<td>212</td>
</tr>
<tr>
<td>Helmholtz, H.</td>
<td>17</td>
</tr>
<tr>
<td>Heraclides</td>
<td>89</td>
</tr>
<tr>
<td>Heraclitus</td>
<td>6</td>
</tr>
<tr>
<td>Herschel, W.</td>
<td>16</td>
</tr>
<tr>
<td>Herzberg, G.</td>
<td>212</td>
</tr>
<tr>
<td>Heydenberg, N.</td>
<td>218</td>
</tr>
<tr>
<td>Hoffman, K. C.</td>
<td>249</td>
</tr>
<tr>
<td>Huygens, C.</td>
<td>18, 108</td>
</tr>
<tr>
<td>Ito, D.</td>
<td>261</td>
</tr>
<tr>
<td>Jaseja, T. S.</td>
<td>94</td>
</tr>
<tr>
<td>Javan, A.</td>
<td>94</td>
</tr>
<tr>
<td>Jeans, J.</td>
<td>65, 68, 69</td>
</tr>
<tr>
<td>Jensen, J. H. D.</td>
<td>228</td>
</tr>
<tr>
<td>Joule, J. P.</td>
<td>17</td>
</tr>
<tr>
<td>Kanesawa, S.</td>
<td>261</td>
</tr>
<tr>
<td>Kepler, J.</td>
<td>89</td>
</tr>
<tr>
<td>Kirchhoff, G. R.</td>
<td>61</td>
</tr>
<tr>
<td>Köbe, Z.</td>
<td>261</td>
</tr>
<tr>
<td>Kramers, H. A.</td>
<td>161, 236</td>
</tr>
<tr>
<td>Kroll, N.</td>
<td>161, 205</td>
</tr>
<tr>
<td>Lamb, W. E., Jr.</td>
<td>161, 205</td>
</tr>
<tr>
<td>Landau, L. D.</td>
<td>47</td>
</tr>
<tr>
<td>Laplace, P.-S.</td>
<td>16</td>
</tr>
<tr>
<td>Larmor, J.</td>
<td>291</td>
</tr>
<tr>
<td>Laties, C. M. G.</td>
<td>222</td>
</tr>
<tr>
<td>Lavoisier, A.</td>
<td>6, 7, 16</td>
</tr>
<tr>
<td>Lederman, L.</td>
<td>248</td>
</tr>
<tr>
<td>Lee, T.-D.</td>
<td>247, 248</td>
</tr>
<tr>
<td>Lenard, P.</td>
<td>70</td>
</tr>
<tr>
<td>Lewis, G. N.</td>
<td>114</td>
</tr>
<tr>
<td>Lifshitz, E. M.</td>
<td>47</td>
</tr>
<tr>
<td>Lippmann, B.</td>
<td>183</td>
</tr>
<tr>
<td>Lorentz, H. A.</td>
<td>68, 94, 95, 104</td>
</tr>
<tr>
<td>Loschmidt, J.</td>
<td>53</td>
</tr>
<tr>
<td>Lucretius</td>
<td>1</td>
</tr>
<tr>
<td>Lyman, T.</td>
<td>81</td>
</tr>
<tr>
<td>Mach, E.</td>
<td>58</td>
</tr>
<tr>
<td>Machiavelli, N.</td>
<td>1</td>
</tr>
<tr>
<td>Majorana, E.</td>
<td>250</td>
</tr>
<tr>
<td>Mariotte, E.</td>
<td>5</td>
</tr>
<tr>
<td>Marsden, E.</td>
<td>73</td>
</tr>
<tr>
<td>Maxwell, J. C.</td>
<td>12, 14, 33, 50, 91, 95, 117, 120</td>
</tr>
<tr>
<td>Mendeleeev, D. I.</td>
<td>171</td>
</tr>
<tr>
<td>Michelson, A.</td>
<td>91, 93, 94</td>
</tr>
<tr>
<td>Millikan, R. A.</td>
<td>54, 55, 70</td>
</tr>
<tr>
<td>Minkowski, H.</td>
<td>96, 97</td>
</tr>
<tr>
<td>Montaigne, M.</td>
<td>1</td>
</tr>
<tr>
<td>Morse, E.</td>
<td>91, 93, 94</td>
</tr>
<tr>
<td>Morse, S. F. B.</td>
<td>12</td>
</tr>
<tr>
<td>Moseley, H. G. J.</td>
<td>83</td>
</tr>
<tr>
<td>Muirhead, H.</td>
<td>222</td>
</tr>
<tr>
<td>Murray, J.</td>
<td>94</td>
</tr>
<tr>
<td>Nagaoka, H.</td>
<td>76</td>
</tr>
<tr>
<td>Navier, C.-L.</td>
<td>44, 46</td>
</tr>
<tr>
<td>Nernst, W.</td>
<td>32</td>
</tr>
<tr>
<td>Newton, I.</td>
<td>1, 3, 18, 21, 59, 108</td>
</tr>
<tr>
<td>Nicholson, W.</td>
<td>13</td>
</tr>
<tr>
<td>Noether, A. E.</td>
<td>194</td>
</tr>
<tr>
<td>Nuttall, F. M.</td>
<td>234</td>
</tr>
<tr>
<td>Ochialini, G. P. S.</td>
<td>222</td>
</tr>
<tr>
<td>Oersted, H. C.</td>
<td>12, 117</td>
</tr>
<tr>
<td>Oliphant, M.</td>
<td>220</td>
</tr>
<tr>
<td>Orear, J.</td>
<td>235</td>
</tr>
<tr>
<td>Oresme, N.</td>
<td>89</td>
</tr>
<tr>
<td>Ostwald, F. W.</td>
<td>58</td>
</tr>
<tr>
<td>Pascal, B.</td>
<td>2</td>
</tr>
<tr>
<td>Paschen, F.</td>
<td>81</td>
</tr>
<tr>
<td>Pauli, W.</td>
<td>151, 167, 170, 244, 245, 271, 275</td>
</tr>
<tr>
<td>Perrin, J.</td>
<td>57, 58, 60</td>
</tr>
<tr>
<td>Pfund, H.</td>
<td>81</td>
</tr>
<tr>
<td>Planck, M.</td>
<td>57, 58, 65–68</td>
</tr>
<tr>
<td>Plato, 6, 10, 11, 89</td>
<td></td>
</tr>
<tr>
<td>Plücker, J.</td>
<td>14</td>
</tr>
<tr>
<td>Poincaré, R.</td>
<td>94, 120</td>
</tr>
<tr>
<td>Pontecorvo, B.</td>
<td>249</td>
</tr>
<tr>
<td>Powell, C. F.</td>
<td>222</td>
</tr>
<tr>
<td>Priestley, J.</td>
<td>6</td>
</tr>
<tr>
<td>Prout, W.</td>
<td>211</td>
</tr>
<tr>
<td>Ptolemy, C.</td>
<td>89</td>
</tr>
<tr>
<td>Pythagoras</td>
<td>88</td>
</tr>
<tr>
<td>Rayleigh, Lord [see Strutt, J. W.]</td>
<td>65, 67–69</td>
</tr>
<tr>
<td>Reines, F.</td>
<td>247</td>
</tr>
<tr>
<td>Retherford, R. C.</td>
<td>161</td>
</tr>
<tr>
<td>Ritz, W.</td>
<td>78, 79, 81</td>
</tr>
</tbody>
</table>
Rosenfeld, A. H., 235
Royds, T. D., 72
Rumford, Count [see Thompson, B.], 17
Rutherford, E., 71–73, 75–77, 176, 182, 210, 211, 213, 217, 218, 220, 229
Rydberg, J., 81

Schluter, R. A., 235
Schwinger, J., 183, 198, 261
Shakespeare, W., 1
Shubert, K. R., 36
Slater, J. C., 170
Socrates, 6
Stoddy, F., 72
Stefan, J., 67
Stokes, G., 44, 46, 47, 50
Stoney, G. J., 14, 54
Strutt, J. W. [Lord Rayleigh], 65

Tati, T., 261
Telegdi, V., 248
Thales, 6
Thomson, B. [Count Rumford], 17
Thomson, G. P., 14, 15, 54, 70, 72, 75, 113
Thomson, J. J., 127
Tomonaga, S.-I., 261
Torricelli, E., 2
Townes, C. H., 94

Townsend, J. S. E., 54, 55
Turay, R., 36
Tuve, M. A., 218
Uhlenbeck, G., 151, 157

van den Broek, A., 76
Van der Waerden, B. L., 84, 124, 225, 291
Volta, A., 11

Wapstra, A. H., 214
Weinberg, S., 1, 36, 47, 88, 97, 147, 204, 217, 221, 260, 275
Weinrich, M., 248
Weisskopf, V. F., 161, 205, 233, 271
Wenzel, G., 236
Wiemann, C., 168
Wien, W., 66, 68
Wilson, H. A., 54
Wooster, W. A., 244, 247
Wu, C. S., 248

Xenophanes, 6

Yang, C.-N., 248
Yukawa, H., 182, 270
Zeeman, P., 135
Subject Index

A and B coefficients, 84–85
action, 193, 252
adiabatic change, 20–21, 31
adjoints of operators, 141–143
alkali metals, 151, 172
alpha decay and alpha particles, 71–73, 216, 229–243
ampere, unit of electric current, 12
angular momentum, see also molecules, rotations, spherical harmonics, spin
addition, 158–159, 162–165
commutation relations, 153–154
conservation, 44, 149, 153
multiplets, 134–135, 155–157
operator in wave mechanics, 132–136
quantization, 79, 82, 133
antiparticle, 245, 271–272
atomic number, 82–84
atomic weight, 7–8, 83
atom, 1, 6, 58, see also atomic number, atomic weight, combining weights law, element, nuclei of atoms
Avogadro’s number \( N_A \), 10, 54, 57, 58
Avogadro’s principle, 8–9
barrier penetration, 229–243
baryon number, 162, 219–220, 222
Bessel functions, 237–239
beta decay, 71–72, 216, 243–250, 279–280
black-body radiation, 57, 61–62
Boltzmann constant \( k \), 6, 9, 30, 54, 57, 66–67
Born approximation, 180–181
Born rule, see probabilities in quantum mechanics
Bose–Einstein statistics, 167–168
Boyle’s law, 2, 4, 5
Bragg formula, 127–129
Brownian motion, 51, 55–57
caloric, 16
calorie, unit of heat, 17
canonical ensemble, 37–38
canonical formalism, 190–195, 292–254
Carnot cycle, 22–26, 29
cathode rays, 14–15
causality, 121–123, 264
Charles’ law, 3, 4, 5, 9, 31
chemical potential, 38, 168
Clebsch–Gordan coefficients, 159, 162–165, 173, 223–224
combination principle, 78–79
combining volumes law, 8–9
combining weights law, 7–8
commutators, 146, 192
Compton wavelength \( h/m_e c \), 113, see also scattering
conservation
angular momentum, 153
differential equation for transport phenomena, 42–43, 114–115
electric charge, 293
in quantum mechanics, 149
continuum limit in quantum mechanics, 145–146
convection, 31, 51
cooling of interstellar gas, 175
correspondence principle, 80
coulomb, unit of electric charge, 12
coulomb force, 11, 79, 136, 214, 230
coulomb gauge, 282–284
coulomb scattering, 75, 181–182
creation and annihilation operators, 257, 270
cross section \( \sigma \), 49–50, 75, 180, 188–189
D line of sodium, 151
Davisson–Germer experiment, 126–128
cooling of interstellar gas, 175
correspondence principle, 80
coulomb, unit of electric charge, 12

coulomb force, 11, 79, 136, 214, 230

coulomb gauge, 282–284

coulomb scattering, 75, 181–182

creation and annihilation operators, 257, 270
cross section \( \sigma \), 49–50, 75, 180, 188–189
D line of sodium, 151
Davisson–Germer experiment, 126–128

307
Subject Index

De Broglie waves, 125–128, 140
decay rates, 188, 190
degeneracy
atomic energy levels, 138, 151, 172
harmonic oscillator energy levels, 227
in perturbation theory, 200–202
molecular energy levels, 174
delta function, 177–178, 241
deuteron, 157, 217, 219
diffusion, 51–53, 58–60, see also Brownian motion
diffusion constant $D$, 51, 59
Dirac equation and field, 276–280
doppler effect, 106
eigenfunctions and eigenvalues, 140
eigenstates and eigenvalues, 207
electric and magnetic forces, 12, 15, 120–121, 196–197
electrostatics, 10–11
electric dipole transitions, see radiative decay
electrone, 14
electrolysis, 13–14
electromagnetism, 11–12, see also light, Maxwell’s equations
electron, see also beta decay, gyromagnetic ratio
charge, 54–55, 58
discovery, 14–15
in nucleus?, 211–212
orbits in atoms, 78
spin, 151–157
element, 6–8, see also periodic table
energy, see also equipartition of energy,
Hamiltonian, heat, kinetic energy
conservation, 17–19, 23, 43
fields, 254
relation to mass, 106–110
entropy, 27–31, 38–39, 41–42
equipartition of energy, 40–41
Euler–Lagrange equations, 253
exclusion principle, see Pauli exclusion principle
expectation values, 143–144, 207
fayd, charge per mole, 13–14, 15, 53, 58
Fermi–Dirac statistics, 169
fermion, 165–171, 173–175, 273–280
Feynman diagrams, 267–268
fine structure, 159–161, 203, 270
Fock space, 260
force, see also electromagnetism, Stokes’ law
in relativity theory, 110–111
Galilean relativity, 45–46, 51, 88–90, 100
gamma decay, 216, 221
gauge transformations, 197, 282, 293–295
gas constant $R$, 10, 53
gases, 2–6, 8–10, 26–27, 31 39–40
Geiger–Nuttall law, 254
general relativity, 102, 260
Green’s function, 178
gyromagnetic ratio, 198
$H$ theorem, 34–37
halogen, 172
Hamiltonian, 141, 190–103
for beta decay interaction 245–246
for charged particle in electromagnetic field, 196
for fields, 254
for electromagnetic field, 286
for harmonic oscillator, 225
harmonic oscillator, 225–228
Hartree approximation, 169–170, 213, 224
heat, 16–17
Heisenberg picture, see time dependence in quantum mechanics
helicity, 158, 284–285
helium nucleus, see alpha decay and alpha particles
Hermitian operator, 142–143
Hilbert space, 124, 146
Hydrodynamics of Bernoulli, 4
hydrogen energy levels, 79–82, 126, 136–138
hyperfine splitting, see 21 cm spectral line
ideal gas, 9–10, 26–27, 31
infrared radiation, 16, 81
interaction picture, 263
isotope, 7, 211
isotopic spin symmetry, 218–224
joule, unit of energy, 17
$K$ meson, 36, 247
kinetic energy, 17–18
kinetic theory, 33–34
Knudsen regime, 51
Lagrangian, 193–194, 252–255
Lamb shift, 161, 203, 205
lasers, 86
lepton number, 249–250
light
light cone, 123
polarization, 62–65, 284–285
speed, 12, 90–91, 100–101
transformation of wave number and frequency, 104–106
linear operators, 139
Lippmann–Schwinger equation, 183, 261
liquid drop model, 214–215
lodestone, 11
Lorentz–Fitzgerald contraction, 94, 104
Lorentz invariance and transformation, 96–102, 264,
270, 273–274
Lyman alpha transition, 292
Subject Index

309

magnetism, 11, 198, see also electromagnetism
magic numbers, 228–229
mass in relativity theory, 106–110
mass of unit atomic weight $m_1$, 9–10, 214
matrix mechanics, 124, 225, 227, 291
Maxwell–Boltzmann distribution, 33–34, 39–40
Maxwell’s equations, 12, 62, 114–120, 196, 281–282
mean free path, 49–51
Michelson–Morley experiment, 91–95
Minkowski spacetime notation, 96–97, 117–119
mole, defined, 10
molecular weight $\mu$, 9–10
molecule, 8–9, 41
angular momentum, 40–41
diatomic molecules, 172–175, 212
momentum
conservation, 18, 43–44, 149
fields, 254
momentum-space wave functions, 145–146
of photons, 70, 111–112
of relativistic particles, 109
operator, 130, 140
muons, 106, 223, 248
Navier–Stokes equation, 44–47
neutral matter, 31–32
neutrinos, 157, 244, 247–250
neutron
decay, 244
discovery, 212–213
mass, 213, 222
noble gases, 172, 224
Noether’s theorem, 194–195, 293
normalization of wave functions, 131, 139, 148, 240
nuclear force, 213–214, 217–218, 224–225
nuclei of atoms
binding energy, 214–216
charge, 76–77
discovery, 72–73
mass, 73–74
radius, 74–75, 213–214, 235
nucleons, 213, 217

On the Electrodynamics of Moving Bodies of Einstein, 95
On the Nature of Things of Lucretius, 1
ortho and para molecules, 173–175, 212
orthogonal state vectors, 207
orthogonal wave functions, 142–144
operators representing observables, 139–141
osmotic pressure, 55–56
para molecules, see ortho and para molecules
parity, see space-inversion symmetry

also see magic numbers, periodic table
periodic table of elements, 171–172
perturbation theory, 199–205, 262–264
photoelectric effect, 70
photons, 67–71, 284–286
pions, 222–223, 248
Planck distribution, 65–66, 68–69, 168
Planck’s constant $\hbar$, 66, 69, 70
Planck’s constant $\hbar$, 80
position operator, 140
positron, 244–245, 247
pressure, 2, 5, 23, 45
also see gases, osmotic pressure, radiation
principal quantum number $n$, 138, 151, 161
Principia of Newton, 3, 18
probabilities in quantum mechanics, 131, 139, 144–145, 179–180, 187, 208
propagator, 267–269
proton, discovered, 210
Prout’s hypothesis, 211
quantum chromodynamics, 221
quantum electrodynamics, 198, 205, 280–295
quantum field theory, 245, 251–295
quantum mechanics, 138–151, 206–209
quarks, 157, 166, 221–222
radiation, 32, 62–65
radiation energy constant, 67
also see $A$ and $B$ coefficients, black-body radiation, light, Planck distribution, Rayleigh-Jeans distribution, Stefan-Boltzmann constant, stimulated emission
radiative decay, 84–85, 174–175, 286–292
radioactivity, 71
also see alpha decay, beta decay, gamma decay
radium & radon, 71, 72, 216, 234–235
Rayleigh-Jeans distribution, 65, 67
Reflections on the Motive Power of Heat of Carnot, 22
reduced mass, 52
relativity, see Einsteinian relativity, Galilean relativity, general relativity
representations of Lorentz group, 274, 276–277
resonance, 190, 223
rotations, 152–153
Rydberg constant, 81

S-matrix, 185, 262, 264
saturation of nuclear force, 213
scalar and vector potentials, 195–198, 281–286
scalar fields, 255–270
scalar product of state vectors, 206
scalar product of wave functions, 141, 158, 183
scattering
by Coulomb potential, 75–76, 181–182
Compton scattering, 112–114
Subject Index

in quantum field theory, 265–270
in quantum mechanics, 175–190
scattering amplitude $f$, 178–179
Schrödinger equation, 129–138, 176, 199
Schrödinger picture, see time-dependence in quantum mechanics
second quantization, 251–252
self-adjoint operators, see Hermitian operators
Slater determinant, 170
sound speed, 21
specific entropy, 31
specific heat, 19–20
spectral lines, 77, see also combination principle, hydrogenic spectrum, Lyman alpha transition, Rydberg constant
spin, 151–152, 154–155, 157
spin–orbit coupling, 160, 228–229, see also fine structure
spin–statistics connection, 167, 273, 275
spherical harmonics, 135–136
stable valley, 215–216
Standard Model, 295
state vectors, 206
Stefan–Boltzmann constant $\sigma$, 67
stimulated emission, 84–87
Stokes’ law, 47, 51, 56, 59
Stokes phenomenon, 239
strangeness, 220
Sun, 31, 88, 249
symmetry, see gauge transformations, isotopic spin symmetry, Lorentz invariance, Noether’s theorem, rotations, space inversion invariance, time reversal invariance
tauon, 249
temperature, 2–3, see also canonical ensemble, entropy, gases
absolute, 3, 26
defined by Carnot cycle efficiency, 21–27
The Nature of the Motion which We Call Heat of Clausius, 17
thermodynamics, laws, 32–33, 38
three-three resonance, 223–224
Timeaus of Plato, 6, 10, 11
time dependence in quantum mechanics, 148–151, 191–193
time dilation, 103–104
time-ordering, 263
time reversal invariance, 36–37
transformation theory of Dirac, 124, 206
transport theory, 42–53
twenty-one cm spectral line, 87, 162
ultraviolet radiation, 70, 81, 292
uncertainty principle, 147
unitarity, 218
uranium, 71, 216
vacuum state and vacuum energy, 259–260, 286
valence, 172
vector potential, see scalar and vector potentials
viscosity $\eta$, 47–49
wave function, 129–132, 139, 209
wave mechanics, 124–129
weak interactions, 223, 247–248, see also beta decay
white dwarf stars, 169
Wien displacement law, 66
Wien distribution, 68
Wigner–Eckart theorem, 204
WKB method, 236–237
X-rays, 71, 83–84, 113, 127
Yukawa potential, 182, 270
Zeeman effect, 135, 202–205
zero-point energy, 226