Social Behavioral Statistics

Focusing on practical application, this textbook provides clear and concise explanations of statistical tests and techniques that students can apply in real-world situations. It has a dual emphasis: first, on doing statistics, and second, on understanding statistics, to do away with the mind-set that statistics is difficult. Procedural explanations are provided so students know how to apply particular statistical tests and techniques in practical research situations. Conceptual understanding is encouraged to ensure students know not only when and how to apply appropriate techniques but also why they are using them. Ancillary resources are available, including sample answers to exercises, teaching slides, an instructor's manual, and a test bank. Illustrative figures, real-world data, practice exercises, and software instructions make this an essential resource for mastering statistics for undergraduate and graduate students in the social and behavioral sciences.

Roberto R. Heredia is Regents Professor in the Department of Psychology and Communication at Texas A&M International University, USA. He served as Chair of the Department of Behavioral Sciences for two years and was director of a multimillion-dollar grant from the US Department of Education. He has published on bilingual memory, bilingual lexical representation, bilingual nonliteral language processing, stereotype processing, and evolutionary psychology.

Richard D. Hartley is Professor in the Department of Criminology and Criminal Justice at the University of Texas at San Antonio, USA. His research interests include decision-making practices for criminal court outcomes, empirical determinants of prosecutorial and judicial decision-making, and process and outcome evaluation. Some of this research has been funded by the National Institute of Justice, the American Statistical Association, and the Bureau of Justice Statistics.

"*Social Behavioral Statistics* is a user-friendly text designed to make statistics accessible and relatable through the use of humor and a diverse range of examples. The focus on hypothesis testing, along with guidance on using jamovi, a free open-source statistical software program, is especially useful for students interested in conducting research projects."

Deborah Koetzle, John Jay College of Criminal Justice

"This new textbook presents statistical concepts in clear, accessible language and incorporates real-world examples to foster an interactive and collaborative classroom environment. Rather than focusing on rote memorization of formulas, it emphasizes understanding the meaning and uses of statistics. The book also offers straightforward, step-by-step instructions for conducting statistical tests using jamovi, enabling students to practically apply what they've learned." Diane Mello-Goldner, Boston University

"An arsenal of statistical tools adds focused certainty to probability estimates, which guides scientific discovery, testability of scientific hunches, and falsifiability checks to spurious truisms. Heredia and Hartley's *Social Behavioral Statistics* is a clear and practical guide to mastering statistics. They show that the intuitive scientist errs with an error of uncertainty that the statistical scientist does not."

Luis Vega, California State University

Social Behavioral Statistics

Roberto R. Heredia Texas A&M International University

Richard D. Hartley University of Texas at San Antonio

Cambridge University Press & Assessment 978-1-108-84102-3 — Social Behavioral Statistics Roberto R. Heredia, Richard D. Hartley, Edited by Dean Champion Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781108841023

DOI: 10.1017/9781108888455

© Richard D. Hartley, Roberto R. Heredia, and the Estate of Dean Champion 2025

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781108888455

First published 2025

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Names: Heredia, Roberto R., 1964– author. | Hartley, Richard D., author. Title: Social behavioral statistics / Roberto R. Heredia, Texas A&M University International, Richard D. Hartley, University of Texas, San Antonio. Description: Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2025. | Includes bibliographical references and index. Identifiers: LCCN 2024015364 | ISBN 9781108841023 (hardback) | ISBN 978110888455 (ebook) Subjects: LCSH: Social sciences – Statistical methods. Classification: LCC HA29 .H47 2025 | DDC 304.072/7–dc23/eng/20240816 LC record available at https://lccn.loc.gov/2024015364

ISBN 978-1-108-84102-3 Hardback ISBN 978-1-108-74470-6 Paperback

Additional resources for this publication at www.cambridge.org/heredia

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> Para Papá y Mamá RRH

Para mi familia, Criss, Emily, y Alexander

RDH

Cambridge University Press & Assessment 978-1-108-84102-3 — Social Behavioral Statistics Roberto R. Heredia, Richard D. Hartley, Edited by Dean Champion Frontmatter <u>More Information</u>

Brief Contents

Preface		<i>page</i> xvii
Acknowledgm	ents	XX
Organization of	of the Book	xxi
1 Statistics in	n the Research Process	1
2 Tabular and	d Graphical Representations	20
3 Measures o	f Central Tendency	40
4 Variability		61
5 The Norma	l Curve	81
6 Hypothesis	Testing	116
7 Effect Size,	Power, and Parameter Estimation	149
8 The <i>t</i> -Test		172
9 Analysis of	Variance	231
10 Bivariate C	orrelation	293
11 Regression		331
12 Chi-Square		367
Appendix: Statistical Tables		397
Glossary		410
References		
Index		424

Cambridge University Press & Assessment 978-1-108-84102-3 — Social Behavioral Statistics Roberto R. Heredia, Richard D. Hartley, Edited by Dean Champion Frontmatter <u>More Information</u>

Detailed Contents

Preface page x				<i>page</i> xvii	
Acknowledgments				XX	
Or	ganiz	zation o	of the Book	xxi	
1	Stat	istics in	the Research Process	1	
	1.1	Intro	luction	1	
	1.2 What Are Statistics?			2	
	1.3 Theory, Research, and Statistics			3	
	1.4	The C	Circularity of the Research Process	3	
	1.5	Varia	bles	5	
		1.5.1	Discrete Variables	6	
		1.5.2	Continuous Variables	6	
	1.6	Assur	nptions Underlying Statistical Procedures	7	
		1.6.1	Randomization	7	
		1.6.2	Levels of Measurement	8	
		1.6.3	Sample Size	10	
		1.6.4	Other Assumptions	10	
	1.7	Sumn	nary	10	
	Key	Conce	pts	11	
	Usi	ng jamo	ovi	11	
	Pra	ctice Ex	vercises	18	
2	Tab	ular and	d Graphical Representations	20	
	2.1	Intro	luction	20	
	2.2	Descr	ibing Data	20	
	2.3	Frequ	ency Distributions	21	
		2.3.1	Constructing Grouped Frequency Distributions	23	
		2.3.2	Upper and Lower Limits	25	
		2.3.3	Cumulative Frequency Distributions	25	
	2.4	Frequ	ency Distribution Graphs	26	
		2.4.1	Bar Graphs	27	
		2.4.2	Histograms and Frequency Polygons	28	
	2.5 Shapes of Frequency Distributions		30		
	2.6	Summ	nary	33	
	Key	Conce	pts	34	

Cambridge University Press & Assessment 978-1-108-84102-3 — Social Behavioral Statistics Roberto R. Heredia, Richard D. Hartley, Edited by Dean Champion Frontmatter <u>More Information</u>

х	Detailed	Contents
Х	Detailed	Contents

	Using jamovi Practice Exercises		
3	Mea	sures of Central Tendency	40
	3.1	Introduction	40
	3.2	The Mode	40
		3.2.1 Mode for Ungrouped Data	40
		3.2.2 Mode for Grouped Data	41
		3.2.3 Assumptions, Advantages, and Disadvantages of the Mode	42
	3.3	The Median	43
		3.3.1 Median for Ungrouped Data	43
		3.3.2 Median for Grouped Data	44
		3.3.3 Assumptions, Advantages, and Disadvantages of the Median	46
		3.3.4 Centiles, Deciles, and Quartiles	46
	3.4	The Mean	48
		3.4.1 Mean for Ungrouped Data	48
		3.4.2 Mean for Grouped Data	49
		3.4.3 Assumptions, Advantages, and Disadvantages of the Mean	50
	3.5	The Mode, Median, and Mean Compared	51
	3.6	The Grand Mean	53
	3.7	Summary	54
	Key	Concepts	55
	For	mulas	55
	Usiı	ng jamovi	56
	Prac	ctice Exercises	57
4	Vari	ability	61
	4.1	Introduction	61
	4.2	The Index of Qualitative Variation (IQV)	61
		4.2.1 Calculating the IQV	62
		4.2.2 Assumptions of the IQV	63
	4.3	The Range	64
		4.3.1 Assumptions of the Range	64
		4.3.2 Interquartile Range	64
	4.4	Variance and Standard Deviation	65
		4.4.1 Variance	66
		4.4.2 Standard Deviation	70
		4.4.3 The Meaning of Standard Deviation	70
		4.4.4 Assumptions of Standard Deviation	71
	4.5	Summary	73
	Key	Concepts	74
	For	mulas	74
	Usii	ng jamovi	75
	Prac	ctice Exercises	79

5	The	Normal Cu	irve	81
	5.1	Introduc	tion	81
	5.2	The Nor	mal Curve	81
		5.2.1 V	Why Is the Normal Curve Important to Social and	
		В	ehavioral Scientists?	82
		5.2.2 T	The Generalizability Function	83
		5.2.3 T	The Statistical Inference Function	83
		5.2.4 T	he Normal Curve as a Statistical Test Assumption	83
	5.3	z-Scores	and the Normal Curve	83
		5.3.1 E	Determining Percentages of Curve Area	84
		5.3.2 T	Tails of the Normal Curve	86
		5.3.3 In	nterpreting the Normal Curve Table	87
		5.3.4 C	Converting Raw Scores to z-Scores	90
		5.3.5 C	Converting z-Scores to Raw Scores	92
		5.3.6 z·	-Scores and Raw Scores for Samples	92
		5.3.7 z·	-Scores, Raw Scores, and the Normal Curve Table	93
		5.3.8 T	ransforming Scores to Standard Forms Other Than the	
		Ν	Iormal Distribution	94
	5.4	Nonnorr	nal Curves	95
		5.4.1 S	kewness	95
		5.4.2 K	Lurtosis	97
	5.5	The Prob	bability Function of the Normal Curve	97
		5.5.1 P	robability	98
		5.5.2 C	Odds	100
		5.5.3 P	robability and the Normal Curve	100
		5.5.4 T	Tails and <i>p</i> -Values	102
	5.6	Summar	У	104
	Key	Concepts		105
	For	nulas		105
	Usir	ng jamovi		105
	Prac	tice Exerc	ises	112
6	Нур	othesis Tes	sting	116
	6.1	Introduc	tion	116
	6.2	Deriving	Hypotheses to Test	116
		6.2.1 R	Lesearch Hypothesis	117
		6.2.2 N	Jull Hypothesis	117
	6.3	The Hyp	othesis-Testing Process	119
	6.4	Decision	Rules	124
	6.5	Sampling	g Distributions of Means	124
		6.5.1 E	xpected Value of the Mean	125
		6.5.2 S	tandard Error of the Mean	126
		6.5.3 H	Iypothesis Testing and the Sampling Distribution of Means	128
		6.5.4 T	'he z-Test	130

Cambridge University Press & Assessment 978-1-108-84102-3 — Social Behavioral Statistics Roberto R. Heredia, Richard D. Hartley, Edited by Dean Champion Frontmatter <u>More Information</u>

xii Detailed Contents

	6.6 I	Levels of Significance	132
	6	5.6.1 Type I and Type II Errors	133
	6.7 C	Critical Regions	136
	6	5.7.1 One-Tailed or Two-Tailed Test?	139
	6.8 7	Fests of Significance and Their Functions	140
	6.9 I	Living with Error	140
	6.10 S	Summary	141
	Key C	Concepts	142
	Form	ulas	142
	Using	jamovi	142
	Practi	ce Exercises	145
7	Effect	Size, Power, and Parameter Estimation	149
	7.1 I	Introduction	149
	7.2 E	Effect Size and Power	149
	7	7.2.1 Effect Size	151
	7	7.2.2 Statistical Power	154
	7	7.2.3 Factors Influencing Power	156
	7.3 E	Estimating Population Parameters	158
	7	7.3.1 Point Estimates	158
	7	7.3.2 Interval Estimates and Confidence Intervals	159
	7	7.3.3 Constructing Confidence Intervals	159
	7	7.3.4 Confidence Intervals and Hypothesis Testing	161
	7.4 S	Summary	162
	Key C	Concepts	162
	Form	ulas	163
	Using	jamovi	163
	Practi	ce Exercises	169
8	The t-	Test	172
	8.1 I	Introduction	172
	8.2 7	The <i>t</i> -Test for a Single Sample	172
	8	3.2.1 Estimating Population Variance	173
	8	3.2.2 Estimated Standard Error of the Mean	176
	8	3.2.3 Mean Differences	176
	8	3.2.4 The <i>t</i> -Distribution	177
	8	3.2.5 Interpreting the <i>t</i> -Distribution	179
	8	3.2.6 Same or Different Populations	179
	8	3.2.7 The Hypothesis-Testing Process for the One-Sample <i>t</i> -Test	180
	8	3.2.8 Effect Size and Power	183
	8	3.2.9 Assumptions of the One-Sample <i>t</i> -Test	185
	8.3 7	The <i>t</i> -Test for Independent Means	189
	8	3.3.1 Estimating Population Variance	190
	8	8.3.2 Estimated Standard Error of the Difference between Two Means	192

Cambridge University Press & Assessment 978-1-108-84102-3 — Social Behavioral Statistics Roberto R. Heredia, Richard D. Hartley, Edited by Dean Champion Frontmatter <u>More Information</u>

		8.3.3	Differences between Two Means	193
		8.3.4	The Hypothesis-Testing Process for the <i>t</i> -Test for Independent Means	194
		8.3.5	Effect Size and Power	197
		8.3.6	Assumptions of the <i>t</i> -Test for Independent Means	198
	8.4	The <i>t</i> -	Test for Dependent Means	201
		8.4.1	Estimating Population Variance	203
		8.4.2	Estimated Standard Error of Difference Scores	204
		8.4.3	The Mean of Difference Scores and the <i>t</i> -Test	204
		8.4.4	The Hypothesis-Testing Process for the <i>t</i> -Test for Dependent Means	205
		8.4.5	The Sandler A-Test	207
		8.4.6	Effect Size and Power	210
		8.4.7	Assumptions of the <i>t</i> -Test for Dependent Means	211
	8.5	Summ	ary	214
	Key	Concep	pts	215
	For	nulas		215
	Usin	ng jamo	vi	217
	Prac	tice Exe	ercises	225
9	Anal	ysis of V	Variance	231
	9.1	Introd	uction	231
	9.2	Analys	sis of Variance (ANOVA)	231
	9.3	The Lo	ogic of ANOVA	232
		9.3.1	The F-Ratio	235
		9.3.2	Within-Groups Variance	235
		9.3.3	Between-Groups Variance	237
		9.3.4	The Between- and Within-Groups Variance Ratio	238
		9.3.5	The <i>F</i> -Distribution	240
		9.3.6	Interpreting the <i>F</i> -Distribution	240
	9.4	Carryi	ng Out an ANOVA	242
		9.4.1	The Hypothesis-Testing Process for Experiment A	245
		9.4.2	The Hypothesis-Testing Process for Experiment B	248
	9.5	Assum	nptions of ANOVA	249
	9.6	Multip	ble-Comparison Tests	250
		9.6.1	Carrying Out a Least Significant Difference	252
		9.6.2	Effect Size and Power	253
	9.7	Factor	rial Designs	260
		9.7.1	Multifactor ANOVA	261
		9.7.2	Main and Interaction Effects	262
		9.7.3	F-Ratio and Factorial Designs	266
	9.8	Two-F	Factor ANOVA	268
		9.8.1	The Hypothesis-Testing Process for Two-Factor ANOVA	268
		9.8.2	Assumptions of Two-Factor ANOVA	271
		9.8.3	Effect Size and Power	271

Cambridge University Press & Assessment 978-1-108-84102-3 — Social Behavioral Statistics Roberto R. Heredia, Richard D. Hartley, Edited by Dean Champion Frontmatter <u>More Information</u>

xiv Detailed Contents

	9.9 Summary	276
	Key Concepts	277
	Formulas	277
	Osnig Janiovi Practice Exercises	270
	Tactice Excluses	200
10	Bivariate Correlation	293
	10.1 Introduction	293
	10.2 Correlation and Association	293
	10.2.1 Meaning of Measures of Association	294
	10.2.2 Strength and Direction of Association	296
	10.2.3 The Statistical Significance of Association	300
	10.2.4 Predictive Utility	301
	10.3 Pearson Correlation Coefficient (r)	304
	10.3.1 Proportional Reduction in Error	306
	10.3.2 The Hypothesis-Testing Process for Pearson's r	307
	10.3.3 Effect Size and Power	313
	10.3.4 Assumptions of Pearson's r	316
	10.4 Outliers and Restricted Range	318
	10.5 Differences between Two Correlations	319
	10.5 Differences between Two Correlations	320
	Vev Concents	322
	Formulas	323
	Using jamovi	323
	Practice Exercises	324
		520
11	Regression	331
	11.1 Introduction	331
	11.2 The Logic of Regression	331
	11.3 The Regression Equation	334
	11.3.1 Carrying Out a Bivariate Regression Analysis	335
	11.3.2 Predicting a z-Score	338
	11.3.3 Regression Coefficients	339
	11.3.4 The Hypothesis-Testing Process for Regression	340
	11.4 Multiple Regression	343
	11.4.1 Commercity	344 245
	11.4.2 Carrying Out a Multiple Regression Analysis	343 240
	11.4.5 The Hypothesis-Testing Process for Multiple Regression	349
	11.4.5 Assumptions about the Error Terms	349
	11.5. Summary	350
	Key Concents	351
	Formulas	352
	i officiality	552

Cambridge University Press & Assessment 978-1-108-84102-3 — Social Behavioral Statistics Roberto R. Heredia, Richard D. Hartley, Edited by Dean Champion Frontmatter <u>More Information</u>

Detailed Contents xv

	Using jamovi Practice Exercises	353 357	
12	Chi-Square	367	
	12.1 Introduction	367	
	12.2 Goodness-of-Fit	367	
	12.3 Table Construction	368	
	12.3.1 One-Variable Tables	368	
	12.3.2 Contingency Tables	369	
	12.3.3 k-Variable Contingency Tables	369	
	12.4 Single-Sample Tests	370	
	12.4.1 The Chi-Square Test	370	
	12.4.2 Degrees of Freedom	370	
	12.4.3 The Chi-Square Distribution	371	
	12.4.4 Interpreting the Chi-Square Distribution	371	
	12.4.5 Carrying Out a Goodness-of-Fit Test	372	
	12.4.6 The Hypothesis-Testing Process for the Single-Sample		
	Chi-Square Test or Goodness-of-Fit Test	374	
	12.4.7 Assumptions of Chi-Square	378	
	12.5 Two-Sample Tests or Tests for Independence	378	
	12.5.1 The Hypothesis-Testing Process for a Chi-Square Test for		
	Two Independent Samples	380	
	12.5.2 Assumptions of the Chi-Square Test for Independence	384	
	12.5.3 Effect Size and Power	384	
	12.6 Tests for Other Levels of Measurement		
	12.7 Summary		
	Key Concepts		
	Formulas		
	Using jamovi		
	Practice Exercises		
Ap	pendix: Statistical Tables	397	
Gl	ossary	410	
Re	ferences	423	
Inc	lex	424	

Preface

To the Student

We've all been through it – it is, and will always be, a part of our personal memories: the first day of class, a required class. The comforting words from the professor: *Statistics is not math; you'll like it. Work on it. It's one of those things that you'll learn to like and appreciate.* Then the same feeling again in graduate school: more required courses in statistics. And again, the comforting words from the statistics professor: *Statistics should not be intimidating, but you will have to work on it to understand it.* In fact, one of the best-known statisticians in the behavioral sciences, Jacob Cohen, about whom you'll learn, didn't have much training in formal mathematics beyond high school.

You see, our perceived fears about statistics oftentimes arise simply from our lack of understanding of, or knowledge about, the topic. And once we do understand statistics, those unfounded fears disappear, and we embrace the world of statistics – we know we have found the *Statistical Truth*! At one point, we were both one of you, fearing and dreading statistics. But now, writing this book has been one of the most, if not *the* most, gratifying experiences in our academic careers.

Our goal in this book is to simplify the learning process so that you can enjoy and understand the statistical universe surrounding you and all of us. Our overall purpose is to simplify the language of statistics and do away with the mind-set that statistics is difficult and that you are not good at math. To do this, we simplify the mathematical computations to a minimum and emphasize intuition, critical thinking, and problem-solving strategies. We use short sentences and paragraphs, and we repeat information tactically to better allow you to process the information fast and efficiently. We provide just enough detail to get our point across. If anything, at times, we might sound repetitive. Repetition, in addition to other learning strategies, such as creating mental images, mental elaboration, paraphrasing, and self-testing, increases retention, remembering, and long-term learning.

Much of the technical language and notation used to describe statistical strategies is simplified. At the same time, consideration has been given to those of you who may wish to use this book as a reference or guide in your future work. We keep notation to a minimum to provide appropriate context and simplify the learning process. However, statistical notation deemed crucial to simplifying complex formulas, and that is standard in the social and behavioral sciences literature, is emphasized.

You will notice that we include topics that are often given extended coverage in more advanced texts. A key objective is to describe and explain some of the more complex statistical procedures in a simplified and conceptual fashion. We make extensive use of easy-to-follow

xvii

xviii Preface

examples drawn from the social, educational, criminological, and psychological sciences in an effort to make this book student-friendly and interesting to those of you majoring in these disciplines and to provide you with opportunities to relate statistical tests to issues you are likely to encounter during the research process.

Critical thinking and understanding are essential in the social and behavioral sciences, and we are confident that we emphasize such vital cognitive and learning processes. Learning about, and practicing, statistical techniques is the best way to become more adept at doing statistics. We believe that practice leads to perfection!

It is our hope that after completing this course, you will be confident and comfortable tackling advanced courses and readings in statistical inference. And you can always drop us a line at rheredia@tamiu.edu or richard.hartley@utsa.edu to let us know how we are doing.

To the Instructor

Thank you for selecting our book! We hope you enjoy using it as much as we enjoyed writing it. Our book is straight to the point. You'll first notice our intense preference for definitional formulas as opposed to computational ones. Computational formulas, in our view, are an excellent source for a frontal lobe workout. At the end, however, computational formulas are moot in relation to the conceptual understanding of statistical principles.

You will also notice our intense emphasis on the hypothesis-testing process. As we entertained the possibility of authoring this book, we were surprised that very few introductory textbooks follow this approach. This approach introduces students not only to applying statistical principles but also to the experimental method of testing viable hypotheses. For this, we are thankful to Arthur Aron. For one of us, he was a mentor and instructor in graduate school, and his coauthored book *Statistics for the Behavioral and Social Sciences: A Brief Course* has been the book of choice for the last twenty years.

To simplify the learning process, the computations of examples are described, both symbolically and verbally, step-by-step. They are simple, clear, and, most important of all, based on the social and behavioral empirical and theoretical literature. Our overall purpose was to include statistical examples that are easy to understand and related to current events. Most important, we present statistical examples that make sense and to which students can relate.

There is a dual level of statistical coverage. The first level consists of elementary tests and techniques, especially those concerned with undergraduates most interested in an applied field. Our goal is for this population of students to develop a general understanding of basic statistical principles so that they become critical consumers of science. In the event that they become interested in the research process, they will have adequate statistical tools for a good start.

The second level of statistical coverage is directly relevant for students who want to take on more significant research projects, such as senior or master's theses. You'll find advanced topics like the index of qualitative variation and mean absolute deviation in Chapter 4, effect size and statistical power in Chapter 7, the Sandler *A*-test in Chapter 8, multiple comparisons and factorial designs in Chapter 9, and simple and multiple regression in Chapter 11.

Preface xix

Instructors with different interests in how the subject matter of this course ought to be taught have the flexibility of choosing which statistical topics to include in their lectures and examinations and which to exclude. This is considered to be a flexibility option available to anyone using this book in their particular course. Different sections of chapters may be omitted, therefore, if instructors want only to convey basic principles and provide an overview of what statistics is and can do.

We are huge fans of free and open source software (FOSS). We grew up using Unix/Windows SAS, Unix/Windows SPSS, and Stata. These are excellent statistical software apps. But, there are equally good and even better FOSS programs for our students to use anytime and anywhere and that are *free, as in free beer*! In fact, some advanced statistical procedures, such as linear mixed models, are easier to carry out and interpret in jamovi or JASP-stats than those traditional ones mentioned earlier.

Out of the different existing FOSS apps (jamovi, JASP-stats, GNU PSPP, Statistics Open for All [SOFA], and R), we selected jamovi for its user-friendliness and extensive support community. Jamovi is a full-fledged statistical app widely accepted by the scientific community, and we are proud to count ourselves as part of this community. Additionally, unlike other introductory books, we introduce students to statistical power and effect size using specific modules in jamovi and G*Power, *the* FOSS app for power analysis. An instructor's manual, slide presentations, a test bank for each chapter, and answers to practice exercises are available at www.cambridge.org/heredia.

Finally, pictures are worth a thousand words and, we know, are more conducive to superior learning. We take advantage of this highly replicated effect and provide just the right number of figures to facilitate students' short- and long-term learning.

Acknowledgments

We acknowledge, first, students from our Basic Statistics for Psychology course, whose curiosity and feedback have been a valuable resource and inspiration. Special thanks to our dear student Ezra Vela, who read every chapter and provided us with lots of feedback, and to Evelyn García – the best stats tutor we ever had – for her diligent and excellent feedback on chapter questions and answers. We thank Ana Lee Paz, our colleague and friend, who was able to capture our love for those furry, four-legged family members in *Moquis Contante* (Mokis the counting dog!) for the book's cover. Finally, we offer thanks to our dear friend and colleague, stats guru Luis A. Vega, for his unwavering support and invaluable feedback on *tough* statistical principles.

We also thank our students and colleagues who had to put up with us while we were preoccupied making sense of our lectures and discussions as we were very involved in the writing process. Most of the figures (graphs) were created using Datagraph. We are thankful to the Datagraph folks for their support and their quick responses.

We have deep gratitude for several individuals who were critical to seeing this book through to completion, including David Repetto, from Cambridge University Press (CUP), for his confidence in and support of our book and, also from CUP, Jane Adams and Rowan Groat, who were instrumental in many ways, from facilitating reviews of chapters to producing tables, figures, and other materials that have made these chapters much more digestible for students. Finally, writing this book was made possible by a Texas A&M International University Faculty Development Leave to RRH for fall 2020.

Organization of the Book

This book provides the fundamentals of statistics for students in the social and behavioral science disciplines. The book has a dual emphasis. One emphasis is on *doing statistics*. This means that nuts-and-bolts procedural explanations are provided so that students know how to apply particular statistical tests and techniques in practical research situations. The second emphasis is on *understanding statistics*. This means that we are most interested in students' conceptual understanding of statistical procedures and their knowing when and how to apply the appropriate statistical techniques as they analyze data. Both doing and understanding are emphasized here.

Content Overview

Chapter 1 explores the link between the research process and theory and the role of statistics in scientific discovery. Discrete and continuous variables, the building blocks of methodology, take center stage with clear and elaborate examples and their applicability to levels or scales of measurement and measures of central tendency.

Chapter 2 discusses the different graphic techniques for describing data. These include bar graphs, histograms, frequency polygons, and shapes and patterns of distributions.

Chapter 3 examines measures of central tendency and their correspondence to normality and skewness.

Chapter 4 examines measures of variability. These measures depict the extent to which scores in a distribution are spread out or clustered together. Thus both the points around which scores focus and how they are distributed around these points compose the subject matter of this chapter.

Chapter 5 examines the normal distribution, its relationship to *z*-scores, and its applicability to probability theory and statistical inference.

Chapter 6 examines the process of statistical decision rules and hypothesis testing. It introduces the student to the hypothesis-testing process and to the relevance of the standard error in reaching statistical conclusions about whether to accept or reject a working hypothesis. Type I and Type II errors, along with the types of statistical tests researchers apply in testing hypotheses, are presented; the latter include one-tailed or directional tests versus two-tailed or nondirectional tests.

Chapter 7 introduces students to statistical power and effect size in hypothesis testing. Guidelines for interpretation of effect size, along with other sources of increasing statistical power, are provided. Point estimation and interval estimation and their relationship to population parameter estimates and the hypothesis-testing process are considered.

xxi

Cambridge University Press & Assessment 978-1-108-84102-3 — Social Behavioral Statistics Roberto R. Heredia, Richard D. Hartley, Edited by Dean Champion Frontmatter More Information

xxii Organization of the Book

Chapter 8 examines the *t*-test and its assumptions as it applies to mean comparison between samples and populations and experimental designs, such as between-subjects, within-subjects, and matched designs. Measures of variability are reintroduced in relation to biased and unbiased estimates and the estimated standard error of the mean.

Chapter 9 introduces students to one-way or one-factor analysis of variance (ANOVA) and factorial designs. Although we provide step-by-step calculation demonstrations, we place greater emphasis on conceptual understanding than on computation, especially for factorial designs and multifactor ANOVA.

Chapter 10 examines the correlation or association between variables. The correlation coefficient, which measures the degree and direction of an association, is discussed, as are some of the issues regarding applying and interpreting correlations. The chapter also outlines the many different measures of association but focuses on Pearson's r.

Chapter 11 introduces students to bivariate regression and multiple regression. The chapter also introduces students to the importance of linear relationships and how linearity can be used to make predictions on one variable from the knowledge of another variable or multiple variables. Calculations are kept to a minimum. Interpretation and conceptual understanding of critical concepts in regression are emphasized.

Chapter 12 presents several popular distribution-free statistical tests that are commonly used in the social and behavioral sciences. The chapter provides an explanation of goodness-of-fit statistical tests, which are often referred to as chi-square tests. Chi-square tests have few restrictive assumptions underlying their application and are used for data that violate one or more of the formal assumptions regarding the use of parametric statistics.