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Les probabilités et la théorie analytique des nombres, c’est la même chose.

paraphrase of Y. Guivarc’h, Rennes, July 2017
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Preface

The style of this book is a bit idiosyncratic. The results that interest us belong

to number theory, but the emphasis in the proofs will be on the probabilistic

aspects and on the interaction between number theory and probability theory.

In fact, we attempt to write the proofs so that they use as little arithmetic as

possible, in order to clearly isolate the crucial number-theoretic ingredients

that are involved.

This book is quite short. We attempt to foster an interest in the topic by

focusing on a few key results that are accessible and at the same time partic-

ularly appealing, in the author’s opinion, without targeting an encyclopedic

treatment of any. We also try to emphasize connections to other areas of

mathematics – first, to a wide array of arithmetic topics, but also to some

aspects of ergodic theory, expander graphs, and so on.

In some sense, the ideal reader of this book is a student who has attended

at least one introductory advanced undergraduate or beginning graduate-level

probability course, including especially the Central Limit Theorem, and maybe

some aspects of Brownian motion, and who is interested in seeing how

probability interacts with number theory. For this reason, there are almost no

number-theoretic prerequisites, although it is helpful to have some knowledge

of the distribution of primes.

Probabilistic number theory is currently evolving very rapidly, and uses

more and more refined probabilistic tools and results. For many number theo-

rists, we hope that the detailed and motivated discussion of basic probabilistic

facts and tools in this book will be useful as a basic “toolbox”.
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Prerequisites and Notation

The basic requirements for most of this text are standard introductory graduate

courses in algebra, analysis (including Lebesgue integration and complex

analysis), and probability. Of course, knowledge and familiarity with basic

number theory (for instance, the distribution of primes up to the Bombieri–

Vinogradov Theorem) are helpful, but we review in Appendix C all the results

that we use. Similarly, Appendix B summarizes the notation and facts from

probability theory that are the most important for us.

We will use the following notation:

(1) For subsets Y1 and Y2 of an arbitrary set X, we denote by Y1 Y2 the

difference set, that is, the set of elements x ∈ Y1 such that x /∈ Y2.

(2) A locally compact topological space is always assumed to be separated

(i.e., Hausdorff), as in Bourbaki [15].

(3) For a set X, |X| ∈ [0, + ∞] denotes its cardinal, with |X| = ∞ if X is

infinite. There is no distinction in this text between the various infinite

cardinals.

(4) If X is a set and f , g two complex-valued functions on X, then we write

synonymously f = O(g) or f ≪ g to say that there exists a constant

C � 0 (sometimes called an “implied constant”) such that

|f (x)| � Cg(x) for all x ∈ X. Note that this implies that in fact g � 0.

We also write f ≍ g to indicate that f ≪ g and g ≪ f .

(5) If X is a topological space, x0 ∈ X and f and g are functions defined on

a neighborhood of x0, with g(x) �= 0 for x in a neighborhood of x0, then

we say that f (x) = o(g(x)) as x → x0 if f (x)/g(x) → 0 as x → x0,

and that f (x) ∼ g(x) as x → x0 if f (x)/g(x) → 1.

(6) We write a | b for the divisibility relation “a divides b”; we denote

by (a,b) the gcd of two integers a and b, and by [a,b] their lcm.

xiii
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xiv Prerequisites and Notation

(7) Usually, the variable p will always refer to prime numbers. In particular,

a series
∑

p(· · · ) refers to a series over primes (summed in increasing

order, in case it is not known to be absolutely convergent), and similarly

for a product over primes.

(8) We denote by Fp the finite field Z/pZ, for p prime, and more generally

by Fq a finite field with q elements, where q = pn, n � 1, is a power of

p. We will recall the properties of finite fields when we require them.

(9) For a complex number z, we write e(z) = e2iπz. If q � 1 and

x ∈ Z/qZ, then e(x/q) is well defined by taking any representative of x

in Z to compute the exponential.

(10) If q � 1 and x ∈ Z (or x ∈ Z/qZ) is an integer that is coprime to q (or a

residue class invertible modulo q), we sometimes denote by q̄ the

inverse class such that xx̄ = 1 in Z/qZ. This will always be done in

such a way that the modulus q is clear from context, in the case where x

is an integer.

(11) Given a probability space (�,�, P), we denote by E(·) (resp. V(·)) the

expectation (resp. the variance) computed with respect to P. It will often

happen that we have a sequence (�N,�N, PN) of probability spaces; we

will then denote by EN or VN the respective expectation and variance

with respect to PN.

(12) Given a measure space (�,�,μ) (not necessarily a probability space), a

set Y with a σ -algebra �′ and a measurable map f : � −→ Y, we

denote by f∗(μ) (or sometimes f (μ)) the image measure on Y; in the

case of a probability space, so that f is seen as a random variable on �,

this is the probability law of f seen as a “random Y-valued element.” If

the set Y is given without specifying a σ -algebra, we will view it usually

as given with the σ -algebra generated by sets Z ⊂ Y such that f −1(Z)

belongs to �.

(13) As a typographical convention, we will use sans-serif fonts like X to

denote an arithmetic random variable and more standard fonts (like X)

for “abstract” random variables. When using the same letter, this will

usually mean that somehow the “purely random” X is the “model” of the

arithmetic quantity X.
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