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Introduction

1.1 Presentation

Different authors might define “probabilistic number theory” in different ways.

Our point of view will be to see it as the study of the asymptotic behavior of

arithmetically defined sequences of probability measures, or random variables.

Thus the content of this book is based on examples of situations where we can

say interesting things concerning such sequences. However, in Chapter 7, we

will quickly survey some topics that might quite legitimately be seen as part of

probabilistic number theory in a broader sense.

To illustrate what we have in mind, the most natural starting point is a

famous result of Erdős and Kac.

Theorem 1.1.1 (the Erdős–Kac Theorem) For any positive integer n � 1, let

ω(n) denote the number of prime divisors of n, counted without multiplicity.

Then, for any real numbers a < b, we have

lim
N→+∞

1

N

∣

∣

∣

∣

{

1 � n � N | a �
ω(n) − log log N

√
log log N

� b

}
∣

∣

∣

∣

=
1

√
2π

∫ b

a

e−x2/2dx.

To spell out the connection between this statement and our slogan, one

sequence of probability measures involved here is the sequence (μN)N�1,

defined as the uniform probability measure supported on the finite set �N =
{1, . . . ,N}. This sequence is defined arithmetically, because the study of

integers is part of arithmetic. The asymptotic behavior is revealed by the

statement. Namely, consider the sequence of random variables

XN(n) =
ω(n) − log log N

√
log log N

1
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2 Introduction

defined on �N for N� 3,1 and the sequence (νN) of their probability distribu-

tions, which are (Borel) probability measures on R defined by

νN(A) = μN(XN ∈ A) =
1

N

∣

∣

∣

∣

{

1 � n � N |
ω(n) − log log N

√
log log N

∈ A

}
∣

∣

∣

∣

for any measurable set A ⊂ R. These form another arithmetically defined

sequence of probability measures, since primes are definitely arithmetic

objects. Theorem 1.1.1 is, by basic probability theory, equivalent to the fact that

the sequence (νN) converges in law to a standard Gaussian random variable as

N → +∞. (We recall here that a sequence of real-valued random variables

(XN) converges in law to a random variable X if

E(f (XN)) → E(f (X))

for all bounded continuous functions f : R → C, and that one can show that

it is equivalent to

P(a < XN < b) → P(a < X < b)

for all a < b such that P(X = a) = P(X = b) = 0; for the standard Gaussian,

this means for all a and b; see Section B.3 for reminders about this.)

The Erdős–Kac Theorem is probably the simplest case where a natural

deterministic arithmetic quantity (the number of prime factors of an integer),

which is individually very hard to grasp, nevertheless exhibits a statistical or

probabilistic behavior which fits a very common probability distribution. This

is the prototype of the kinds of statements we will discuss (although sometimes

the limiting measures will be far from standard!).

We will prove Theorem 1.1.1 in the next chapter. Before we do this, we will

begin with a few results that are much more elementary but which may, with

hindsight, be considered as the simplest cases of the type of results we want to

describe.

1.2 How Does Probability Link with

Number Theory Really?

Before embarking on this, however, it might be useful to give a rough idea

of the way probability theory and arithmetic will combine to give interesting

limit theorems like the Erdős–Kac Theorem. The strategy that we outline here

1 Simply so that log log N > 0.
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1.2 How Does Probability Link with Number Theory Really? 3

will be, in different guises, at the core of the strategy of the proofs of many

theorems in this book.

We typically will be working with a sequence (Xn) of arithmetically

interesting random variables, and we wish to prove that it converges in law.

In many cases, we do this with a two-step process.

(1) We begin by approximating (Xn) by another sequence (Yn), in such a

way that convergence in law of these approximations implies that of (Xn),

with the same limit. In other words, we see Yn as a kind of perturbation

of Xn, which is small enough to preserve convergence in law. Notably, the

approximation might be of different sorts: the difference Xn − Yn might,

for instance, converge to 0 in probability, or in some Lp-space; in fact, we

will sometimes encounter a process of successive approximations, where

the successive perturbations are small in different senses, before reaching

a convenient approximation Yn (this is the case in the proof of Theorem

4.1.2).

(2) Having found a good approximation Yn, we prove that it converges in law

using a probabilistic criterion that is sufficiently robust to apply; typical

examples are the method of moments, and the convergence theorem of

P. Lévy based on characteristic functions (i.e., Fourier transforms),

because analytic number theory often gives tools to compute

approximately such invariants of arithmetically defined random variables.

Both steps are sometimes quite easy to motivate using some heuristic

arguments (for instance, when Xn or Yn are represented as a sum of various

terms, we might guess that these are “approximately independent,” to lead to

a limit similar to that of sums of independent random variables), but they may

also involve quite subtle ideas.

We will not dwell further on this overarching strategy, but the reader will be

able to recognize how it fits into this skeleton when we discuss the steps of the

proof of some of the main theorems.

In many papers written by (or for) analytic number theorists, the approx-

imations of Step 1, as well as (say) the moment computations of Step 2, are

performed using notation, terminology and normalizations coming from the

customs and standards of analytic number theory. In this book, we will try to

express them instead, as much as possible, in good probabilistic style (e.g.,

we attempt to mention as little as possible the “elementary events” of the

underlying probability space). This is usually simply a matter of cosmetic

transformations, but sometimes it leads to slightly different emphasis, in

particular concerning the nature of the approximations in Step 1. We suggest
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4 Introduction

that the reader compare our presentation with that of some of the original

source papers, in order to assess whether this style is enlightening (as we often

find it to be), or not.

1.3 A Prototype: Integers in Arithmetic Progressions

As mentioned above, we begin with a result that is so elementary that it

is usually not presented as a separate statement (let alone as a theorem!).

Nevertheless, as we will see, it is the basic ingredient (and explanation) for

the Erdős–Kac Theorem, and generalizations of it become quite quickly very

deep.

Theorem 1.3.1 For N � 1, let �N = {1, . . . ,N} with the uniform probability

measure PN. Fix an integer q � 1, and denote by πq : Z −→ Z/qZ the

reduction modulo q map. Let XN be the random variables given by XN(n) =
πq(n) for n ∈ �N.

As N → +∞, the random variables XN converge in law to the uniform

probability measure μq on Z/qZ. In fact, for any function

f : Z/qZ −→ C,

we have

∣

∣E(f (XN)) − E(f )
∣

∣ �
2

N
‖f ‖1, (1.1)

where

‖f ‖1 =
∑

a∈Z/qZ

|f (a)|.

Proof It is enough to prove (1.1), which gives the convergence in law by letting

N → +∞. This is quite simple. By definition, we have

E(f (XN)) =
1

N

∑

1�n�N

f (πq(n))

and

E(f ) =
1

q

∑

a∈Z/qZ

f (a).

The idea is then clear: among the integers 1 � n � N, roughly N/q are in

any given residue class a (mod q), and if we use this approximation in the first

formula, we obtain precisely the second.
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1.3 A Prototype: Integers in Arithmetic Progressions 5

To do this in detail, we gather the integers in the sum according to their

residue class a modulo q. This gives

1

N

∑

1�n�N

f (πq(n)) =
∑

a∈Z/qZ

f (a) ×
1

N

∑

1�n�N
n≡a (mod q)

1.

The inner sum, for each a, counts the number of integers n in the interval

1 � n � N such that the remainder under division by q is a. These integers

n can be written n = mq + a for some m ∈ Z, if we view a as an actual

integer, and therefore it is enough to count those integers m ∈ Z for which

1 � mq + a � N. The condition translates to

1 − a

q
� m �

N − a

q
,

and therefore we are reduced to counting integers in an interval. This is

not difficult, although we have to be careful with boundary terms, since the

bounds of the interval are not necessarily integers. The length of the interval is

(N−a)/q−(1−a)/q = (N−1)/q. In general, in an interval [α,β] with α � β,

the number Nα,β of integers satisfies

β − α − 1 � Nα,β � β − α + 1

(and the boundary contributions should not be forgotten, although they are

typically negligible when the interval is long enough).

Hence the number Na of values of m satisfies

N − 1

q
− 1 � Na �

N − 1

q
+ 1, (1.2)

and therefore
∣

∣

∣

∣

Na −
N

q

∣

∣

∣

∣

� 1 +
1

q
.

By summing over a in Z/qZ, we deduce now that

∣

∣

∣

∣

∣

∣

1

N

∑

1�n�N

f (πq(n)) −
1

q

∑

a∈Z/qZ

f (a)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

a∈Z/qZ

f (a)

(

Na

N
−

1

q

)

∣

∣

∣

∣

∣

∣

�
1 + q−1

N

∑

a∈Z/qZ

|f (a)| �
2

N
‖f ‖1.
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6 Introduction

Remark 1.3.2 As a matter of notation, we will sometimes remove the

variable N from the notation of random variables, since the value of N is

usually made clear by the context, frequently because of its appearance in

an expression involving PN(·) or EN(·), which refers to the probability and

expectation on �N.

Despite its simplicity, this result already brings up a number of important

features that will occur extensively in later chapters.

A first remark is that we actually proved something much stronger than the

statement of convergence in law: the bound (1.1) gives a rather precise estimate

of the speed of convergence of expectations (or probabilities) computed using

the law of XN to those computed using the limit uniform distribution μq . Most

importantly, as we will see shortly, these estimates are uniform in terms of

q, and give us information on convergence, or more properly speaking on the

“distance” between the law of XN and μq , even if q depends on N in some way.

To be more precise, take f to be the characteristic function of a residue

class a ∈ Z/qZ. Then since E(f ) = 1/q, we get

∣

∣

∣

∣

P(πq(n) = a) −
1

q

∣

∣

∣

∣

�
2

N
.

This is nontrivial information as long as q is a bit smaller than N. Thus, this

states that the probability that n � N is congruent to a modulo q is close to the

intuitive probability 1/q, uniformly for all q just a bit smaller than N, and also

uniformly for all residue classes. We will see, both below and in many similar

situations, that uniformity aspects are essential in applications.

The second remark concerns the interpretation of the result. Theorem 1.3.1

can explain what is meant by such intuitive statements as the probability that

an integer is divisible by 2 is 1/2. Namely, this is the probability, according to

the uniform measure on Z/2Z, of the set {0}, and this is simply the limit given

by the convergence in law of the variables π2(n) defined on �N to the uniform

measure μ2.

This idea applies to many other similar-sounding problems. The most

elementary among these can often be solved using Theorem 1.3.1. We present

one famous example: what is the “probability” that an integer n� 1 is

squarefree, which means that n is not divisible by a square m2 for some

integer m� 2 (or, equivalently, by the square of some prime number)? Here

the interpretation is that this probability should be

lim
N→+∞

1

N
|{1 � n � N | n is squarefree}|.
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1.3 A Prototype: Integers in Arithmetic Progressions 7

If we prefer (as we do) to speak of sequences of random variables, we can

take the sequence of Bernoulli random variables BN indicators of the event

that n ∈ �N is squarefree, so that

P(BN = 1) =
1

N
|{1 � n � N | n is squarefree}|.

We then ask about the limit in law of (BN). The answer is as follows:

Proposition 1.3.3 The sequence (BN) converges in law to a Bernoulli random

variable B with P(B = 1) = 6
π2 . In other words, the “probability” that an

integer n is squarefree, in the interpretation discussed above, is 6/π2.

Proof The idea is to use inclusion-exclusion: to say that n is squarefree means

that it is not divisible by the square p2 of any prime number. Thus, if we denote

by PN the probability measure on �N, we have

PN(n is squarefree) = PN

(

⋂

p prime

{p2 does not divide n}
)

.

There is one key step now that is both obvious and crucial: because of the

nature of �N, the infinite intersection may be replaced by the intersection over

primes p �
√

N, since all integers in �N are � N. Applying the inclusion-

exclusion formula, we obtain

PN

(

⋂

p�N1/2

{p2 does not divide n}
)

=
∑

I

(−1)|I| PN

(

⋂

p∈I

{p2 divides n}
)

,

(1.3)

where I runs over the set of subsets of the set {p � N1/2} of primes � N1/2,

and |I| is the cardinality of I. But, by the Chinese Remainder Theorem, we have

⋂

p∈I

{p2 divides n} = {d2
I divides n},

where dI is the product of the primes in I. Once more, note that this set is

empty if d2
I > N. Moreover, the fundamental theorem of arithmetic shows that

I �→ dI is injective, and we can recover |I| also from dI as the number of prime

factors of dI. Therefore, we get

PN(n is squarefree) =
∑

d�N1/2

μ(d) PN(d2 divides n),

www.cambridge.org/9781108840965
www.cambridge.org


Cambridge University Press
978-1-108-84096-5 — An Introduction to Probabilistic Number Theory
Emmanuel Kowalski 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Introduction

where μ(d) is the Möbius function, defined for integers d � 1 by

μ(d) =

{

0 if d is not squarefree,

(−1)k if d = p1 · · ·pk with pi distinct primes

(see Definition C.1.3).

But d2 divides n if and only if the image of n by reduction modulo d2 is 0.

By Theorem 1.3.1 applied with q = d2 for all d � N1/2, with f the indicator

function of the residue class of 0, we get

PN(d2 divides n) =
1

d2
+ O(N−1)

for all d, where the implied constant in the O(·) symbol is independent of d

(in fact, it is at most 2). Note in passing how we use crucially here the fact that

Theorem 1.3.1 was uniform and explicit with respect to the parameter q.

Summing the last formula over d � N1/2, we deduce

PN(n is squarefree) =
∑

d�n1/2

μ(d)

d2
+ O

(

1
√

N

)

.

Since the series with terms 1/d2 converges, this shows the existence of the

limit, and that (BN) converges in law as N → +∞ to a Bernoulli random

variable B with success probability

P(B = 1) =
∑

d�1

μ(d)

d2
, P(B = 0) = 1 −

∑

d�1

μ(d)

d2
.

It is a well-known fact (the “Basel problem,” first solved by Euler; see Exercise

1.3.4 for a proof) that

∑

d�1

1

d2
=

π2

6
.

Moreover, a basic property of the Möbius function states that

∑

d�1

μ(d)

ds
=

1

ζ(s)

for any complex number s with Re(s) > 1, where

ζ(s) =
∑

d�1

1

ds

www.cambridge.org/9781108840965
www.cambridge.org


Cambridge University Press
978-1-108-84096-5 — An Introduction to Probabilistic Number Theory
Emmanuel Kowalski 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.3 A Prototype: Integers in Arithmetic Progressions 9

is the Riemann zeta function (Corollary C.1.5), and hence we get

∑

d�1

μ(d)

d2
=

1

ζ(2)
=

6

π2
.

Exercise 1.3.4 In this exercise, we explain a proof of Euler’s formula

ζ(2) = π2/6.

(1) Assuming that

sin(πx)

πx
=

∏

n�1

(

1 −
x2

n2

)

(another formula of Euler), find a heuristic proof of ζ(2) = π2/6. [Hint: First,

express the sum of the inverses of the roots of a polynomial (with nonzero

constant term) in terms of its coefficients.]

The following argument, due to Cauchy, can be seen as a way to make

rigorous the previous idea.

(2) Show that for n � 1 and x ∈ R πZ, we have

sin(nx)

(sin x)n
=

∑

0�m�n/2

(−1)m
(

n

2m + 1

)

cotan(x)n−(2m+1).

(3) Let m � 1 be an integer, and let n = 2m + 1. Show that

m
∑

r=1

cotan
( rπ

n

)2

=
2m(2m − 1)

6

and

m
∑

r=1

1

sin
( rπ

n

)2
=

2m(2m + 2)

6
.

[Hint: Using (1), view the numbers cotan(rπ/n)2 as the roots of a polynomial

of degree m, and use the formula for the sum of the roots of a polynomial.]

(4) Deduce that

2m(2m − 1)

6
<

m
∑

k=1

(

2m + 1

kπ

)2

<
2m(2m + 2)

6
,

and conclude.

The proof of Proposition 1.3.3 above was written in probabilistic style,

emphasizing the connection with Theorem 1.3.1. It can be expressed more
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10 Introduction

straightforwardly as a sequence of manipulation with finite sums, using

the formula

∑

d2|n

μ(d) =

{

1 if n is squarefree,

0 otherwise
(1.4)

for n � 1 (which is implicit in our discussion) and the approximation

∑

1�n�N
d|n

1 =
N

d
+ O(1)

for the number of integers in an interval which are divisible by some d � 1.

This goes as follows:
∑

n�N
n squarefree

1 =
∑

n�N

∑

d2|n

μ(d) =
∑

d�
√

N

μ(d)
∑

n�N

d2|n

1

=
∑

d�
√

N

μ(d)

(

N

d2
+ O(1)

)

= N
∑

d

μ(d)

d2
+ O(

√
N).

Obviously, this is much shorter, although one needs to know the for-

mula (1.4), which was implicitly derived in the previous proof.2 But there is

something quite important to be gained from the probabilistic viewpoint, which

might be missed by reading too quickly the second proof. Indeed, in formulas

like (1.3) (or many others), the precise nature of the underlying probability

space �N is quite hidden – as is customary in probability where this is often

not really relevant. In our situation, this suggests naturally to study similar

problems for different sequences of integer-valued random variables rather

than taking integers uniformly between 1 and N.

This has indeed been done, and in many different ways. But even before

looking at any example, we can predict that some new – interesting –

phenomena will arise when doing so. Indeed, even if our first proof of

Proposition 1.3.3 was written in a very general probabilistic language, it did

use one special feature of �N: it only contains integers n � N, and even more

particularly, it does not contain any element divisible by d2 for d larger than√
N. (More probabilistically, the probability PN(d2 divides n) is then zero.)

2 Readers who are already well versed in analytic number theory might find it useful to translate
back and forth various estimates written in probabilistic style in this book.
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