Communicative Efficiency

All living beings try to save effort, and humans are no exception. This groundbreaking book shows how we save time and energy during communication by unconsciously making efficient choices in grammar, lexicon and phonology. It presents a new theory of ‘communicative efficiency’, the idea that language is designed to be as efficient as possible, as a system of communication. The new framework accounts for the diverse manifestations of communicative efficiency across a typologically broad range of languages, using various corpus-based and statistical approaches to explain speakers’ bias towards efficiency. The author’s unique interdisciplinary expertise allows her to provide rich evidence from a broad range of language sciences. She integrates diverse insights from over a hundred years of research into this comprehensible new theory, which she presents step-by-step in clear and accessible language. It is essential reading for language scientists, cognitive scientists and anyone interested in language use and communication.

Natalia Levshina is a postdoctoral researcher at the Neurobiology of Language Department, Max Planck Institute for Psycholinguistics. She is the author of the best-selling book How to Do Linguistics with R (2015).
Communicative Efficiency

Language Structure and Use

Natalia Levshina

Max Planck Institute for Psycholinguistics, The Netherlands
To my teachers
Contents

List of Figures page x
List of Tables xii
Preface xv
Acknowledgements xvi
List of Abbreviations xvii

Part I Different Types of Efficiency in Language 1
1 Communicative Efficiency: Main Concepts 3
 1.1 What Is Communicative Efficiency? 3
 1.2 Benefits and Costs in Communication 8
 1.3 How to Be Efficient? 18
 1.4 Three Principles of Efficient Communication 23
 1.5 ‘Good-Enough’ Efficiency 29
 1.6 Conclusions 34
2 Efficiency and Formal Length 36
 2.1 Efficient Length Asymmetries 36
 2.2 Accessibility of Referents and Length of Referential Expressions and Markers 37
 2.3 Grammatical Coding Asymmetries and Splits 46
 2.4 The Use and Omission of Clause Connectors 50
 2.5 Same-Subject and Different-Subject Constructions 55
 2.6 Zipf’s Law of Abbreviation 57
 2.7 Phonetic Reduction and Enhancement 61
 2.8 Conclusions 65
3 Efficiency and the Order of Meaningful Elements 66
 3.1 Efficient Order 66
 3.2 Factors Determining Efficiency of Order 66
 3.3 Cross-Linguistic Manifestations of Efficient Order 76
 3.4 Star Wars and Violations of Conventional Word Order 90
 3.5 Conclusions 93
4 Other Ways of Saving Effort 95
 4.1 Efficiency Beyond Coding Length and Word Order 95
 4.2 Preference for Accessible Units and Interpretations 95
 4.3 Analytic Support 97
 4.4 *Horror Aequi*, or Avoidance of Identity 100
 4.5 Entry Place for New Referents 102
 4.6 Conclusions 103

Part II Efficiency and Language Evolution 105
5 Emergence of Efficient Language Patterns 107
 5.1 Changes Leading to Efficient Patterns 107
 5.2 Efficiency-Driven Formal Reduction 109
 5.3 Efficiency-Driven Formal Enhancement 111
 5.4 Causal Models of Formal Reduction and Enhancement 118
 5.5 Suppletion, Compositionality and the Competition of Meanings for Forms 128
 5.6 Word Order Optimization 130
 5.7 A Note on Teleology 132
 5.8 Conclusions 134
6 From Trade-Offs to Causal Networks 136
 6.1 Trade-Offs in Linguistics 136
 6.2 Problems with Trade-Offs 139
 6.3 From the Trade-Off between Case Marking and Word Order to a Multivariate Causal Network 144
 6.4 Conclusions 151

Part III Case Studies 153
7 Efficient Form–Meaning Mapping in Causative Constructions 155
 7.1 The Causative Continuum 155
 7.2 More Than Just Direct and Indirect Causation 161
 7.3 Competition between Formal Parameters 175
 7.4 Diachronic Evidence 182
 7.5 An Artificial Language Learning Experiment 187
 7.6 Conclusions 191
8 Differential Case Marking and Efficiency 193
 8.1 Differential Case Marking 193
 8.2 Cross-Linguistic Generalizations Related to Differential Case Marking 195
 8.3 Explanations of Differential Case Marking 203
 8.4 Reverse Engineering: Cross-Linguistic Generalizations and Corpus Data 208
 8.5 Development of Differential Case Marking 223
 8.6 Experimental Evidence from Artificial Languages 226
 8.7 Conclusions 228
9 Efficient Use of Function Words in English Alternations 230
 9.1 Construction–Filler Predictability and Efficiency 230
 9.2 Stay (at) Home, Save Lives! 232
Contents

9.3 Efficient Use of *Help (to) Infinitive* 234
9.4 Alternation *Go (and) Verb* 240
9.5 Conclusions 244

10 Conclusions and Perspectives 245

Appendices

Appendix 1 List of Languages in the Typological Sample Used in Chapter 7 251
Appendix 2 Corpus Frequencies of Different A and P from Previous Studies Used in Chapter 8 253

References 256
Index 288
Figures

1.1 A hierarchy of benefits in linguistic communication
1.2 Different types of costs in linguistic communication
2.1 Spearman’s rank correlation coefficients between word length and self-information, and between word length and contextual informativity
3.1 A sentence with crossing dependencies, according to the Universal Dependencies style
3.2 Proportions of nominal objects (horizontal axis) and pronominal objects (vertical axis) after verbs in the Universal Dependencies corpora
5.1 A pragmatic causal model of language change
5.2 A causal model of language change based on Zipf’s Rational Artisan
5.3 A causal model of language change based on Bybee’s usage-based approach
6.1 A Pareto frontier based on imaginary data with two different costs
6.2 A causal graph showing relationships between clarity, ease and context in communication
6.3 A graph displaying causal relationships between four types of cues
7.1 Percentage of the total number of causative situations in corpora of three languages
7.2 A conditional inference tree for French
7.3 Fragments of a video clip used in the experiment
7.4 Counts of short and long causative forms in the responses
8.1 Probabilities of different features of A based on corpora of spontaneous conversations in five languages
8.2 Probabilities of different features of P based on corpora of spontaneous conversations in five languages
<table>
<thead>
<tr>
<th>List of Figures</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3 Probabilities of the role A given different features based on corpora of spontaneous conversations in five languages</td>
<td>221</td>
</tr>
<tr>
<td>8.4 Proportions of marked object forms produced by different pairs of participants in the online communication game</td>
<td>228</td>
</tr>
<tr>
<td>9.1 Effect of informativity on the chances of go and Verb vs. go Verb, based on a Generalized Additive Model</td>
<td>243</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Different properties of language use and change</td>
<td>133</td>
</tr>
<tr>
<td>7.1</td>
<td>Correlation between formal compactness and semantic and syntactic parameters according to Dixon (2000)</td>
<td>161</td>
</tr>
<tr>
<td>7.2</td>
<td>Different types of causation in the typological sample, the meaning of the less compact form</td>
<td>164</td>
</tr>
<tr>
<td>7.3</td>
<td>Semantic variables used in the study based on the parallel corpus</td>
<td>171</td>
</tr>
<tr>
<td>7.4</td>
<td>Variables participating in splits that separate analytic from lexical causatives</td>
<td>173</td>
</tr>
<tr>
<td>7.5</td>
<td>Variables participating in splits that separate morphological from lexical causatives</td>
<td>173</td>
</tr>
<tr>
<td>7.6</td>
<td>Variables participating in splits that separate analytic from morphological causatives</td>
<td>174</td>
</tr>
<tr>
<td>7.7</td>
<td>Formal parameters associated with (in)directness of causation: number of contrasting pairs</td>
<td>180</td>
</tr>
<tr>
<td>8.1</td>
<td>Cross-linguistic distribution of differential transitive subject marking in AUTOTYP 0.1</td>
<td>199</td>
</tr>
<tr>
<td>8.2</td>
<td>Cross-linguistic distribution of differential object marking in AUTOTYP 0.1</td>
<td>200</td>
</tr>
<tr>
<td>8.3</td>
<td>Number of languages that fit (violate) the scales in the cross-linguistic differential and optional marking database</td>
<td>202</td>
</tr>
<tr>
<td>8.4</td>
<td>Reverse-engineered predictions for the distribution of features of A and P in discourse</td>
<td>211</td>
</tr>
<tr>
<td>8.5</td>
<td>Distribution of features of A (transitive subjects) within the role</td>
<td>214</td>
</tr>
<tr>
<td>8.6</td>
<td>Distribution of features of P within the role</td>
<td>216</td>
</tr>
<tr>
<td>8.7</td>
<td>Distribution of the roles within the features (only A shown)</td>
<td>217</td>
</tr>
<tr>
<td>8.8</td>
<td>Reverse-engineered predictions and the data</td>
<td>222</td>
</tr>
<tr>
<td>9.1</td>
<td>Frequency and informativity of the top twelve verbs most frequently used with locative (at) home</td>
<td>234</td>
</tr>
</tbody>
</table>
List of Tables

9.2 Frequencies of different subschemata of the construction with help
9.3 Spearman’s coefficients representing partial correlations between the proportions of to-infinitives and the informativity measures

xiii

239
240
Preface

This book is a result of two anachronisms. The first one is the old German tradition of writing a postdoctoral thesis. It is part of the habilitation process, which enables a researcher to become a professor. This intention has not materialized yet, but I really enjoyed the process itself when I was writing my habilitation thesis back in 2018. I found that the large format allowed me to put together many different things that I have been thinking about, so I decided to develop the thesis into something better and more comprehensive. And then suddenly came the second anachronism, the pandemic of the dangerous virus, which has been plaguing us since 2020. Never had I thought that such a thing would be possible in the twenty-first century. The shutdown, however, did have the proverbial silver lining, giving me the time and mental space necessary for thinking about the big picture.

Of course, a book may also be an anachronism these days, when important debates happen on Twitter or Facebook. I really hope we are not there yet, but for those who do not have time to read the whole text, the individual chapters should be sufficiently accessible. Some of them provide overviews of specific types of efficiency, while others are centred around a well-known linguistic phenomenon, such as causative constructions or differential case marking.

Thanks to my unconventional career path, or rather, stochastic Markov chain, I have had an opportunity to pursue different research directions and learn about different theories and methods from typology, functional and cognitive linguistics, psycholinguistics, neuroscience and corpus linguistics. I hope that this collection of findings from diverse disciplines will be useful to researchers from different frameworks and backgrounds, and will inspire more (and better) interdisciplinary research in language sciences.
An African proverb says, ‘It takes a village to raise a child.’ To paraphrase, it takes a research community to do science. This book is inspired by encounters with many brilliant people, face-to-face and more recently on Zoom. I could not possibly do justice to all of them here, to my colleagues and ex-colleagues in Leipzig, Nijmegen and around the world. Still, I must mention Martin Haspelmath, whose generous intellectual and practical support enabled me to start with this project when I was working in his Leipzig lab in 2016–2019. My work on this book has continued at the Max Planck Institute for Psycholinguistics in Nijmegen, where I have been working since 2019. I am particularly grateful to Peter Hagoort, the head of the Neurobiology of Language Department, who has given me a chance to learn about psycholinguistics and neuroscience, which are indispensable for efficiency research, in a very friendly and intellectually stimulating environment.

I have also learned a lot from my interactions with such experts on efficiency and closely related topics as Mira Ariel, Gertraud Fenk-Oczlon, Martin Haspelmath, John Hawkins, members and ex-members of Ted Gibson’s lab at the MIT, and many, many others. My special thanks go to all colleagues in the Language in Interaction Consortium, who have helped me to understand better the cognitive processes involved in human communication. Of course, all mistakes in this book are solely mine.

Financially, this research was possible thanks to the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 670985) and later thanks to the Dutch Research Foundation NWO (Gravitation grant Language in Interaction, grant number 024.001.006).

I also want to thank my husband Björn for his unfailing faith in me and also for supporting me in my attempts to keep mens sana in corpore sano, which has been especially important and challenging in these strange times.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1st person</td>
</tr>
<tr>
<td>2</td>
<td>2nd person</td>
</tr>
<tr>
<td>3</td>
<td>3rd person</td>
</tr>
<tr>
<td>1+2</td>
<td>1st person plural inclusive</td>
</tr>
<tr>
<td>A</td>
<td>grammatical role corresponding to the Agent</td>
</tr>
<tr>
<td>ABS</td>
<td>absolutive</td>
</tr>
<tr>
<td>ACC</td>
<td>accusative</td>
</tr>
<tr>
<td>AGT</td>
<td>agentive</td>
</tr>
<tr>
<td>ART</td>
<td>article</td>
</tr>
<tr>
<td>ASP</td>
<td>aspect</td>
</tr>
<tr>
<td>CAUS</td>
<td>causative</td>
</tr>
<tr>
<td>CONV</td>
<td>converb</td>
</tr>
<tr>
<td>DAT</td>
<td>dative</td>
</tr>
<tr>
<td>DEC/INF</td>
<td>declarative informal</td>
</tr>
<tr>
<td>DEF</td>
<td>definite</td>
</tr>
<tr>
<td>DIM</td>
<td>diminutive</td>
</tr>
<tr>
<td>DIR</td>
<td>directional</td>
</tr>
<tr>
<td>ERG</td>
<td>ergative</td>
</tr>
<tr>
<td>EXP</td>
<td>experiential aspectual particle</td>
</tr>
<tr>
<td>F</td>
<td>feminine</td>
</tr>
<tr>
<td>FOC</td>
<td>focus</td>
</tr>
<tr>
<td>FUT</td>
<td>future</td>
</tr>
<tr>
<td>GEN</td>
<td>genitive</td>
</tr>
<tr>
<td>IM.P</td>
<td>immediate past</td>
</tr>
<tr>
<td>IND</td>
<td>indicative</td>
</tr>
<tr>
<td>INF</td>
<td>infinitive</td>
</tr>
<tr>
<td>INTR</td>
<td>intransitive</td>
</tr>
<tr>
<td>LOC</td>
<td>locative</td>
</tr>
<tr>
<td>M</td>
<td>masculine</td>
</tr>
<tr>
<td>NAR</td>
<td>narrative</td>
</tr>
<tr>
<td>NOM</td>
<td>nominative</td>
</tr>
<tr>
<td>NPST</td>
<td>non-past</td>
</tr>
</tbody>
</table>
xviii List of Abbreviations

OBJ object
Q question particle
P grammatical role corresponding to the Patient
ℙ probability
PART particle
PERF perfect
PFV perfective
PL plural
POSS possessive
PRES present
PRO pronoun
PST past
REC.P recent past
S grammatical role corresponding to the intransitive Subject
 (in ergative languages)
SBJ subject
SBJV subjunctive
SFP sentence-final particle
SG singular
SUP supine
TNS tense
TR transitive