

A Comparison Process for Mouse Pairs

This book proves some important new theorems in the theory of canonical inner models for large cardinal hypotheses, a topic of central importance in modern set theory. In particular, the author "completes" the theory of *Fine Structure and Iteration Trees* (FSIT) by proving a comparison theorem for mouse pairs parallel to the FSIT comparison theorem for pure extender mice, and then using the underlying comparison process to develop a fine structure theory for strategy mice.

Great effort has been taken to make the book accessible to non-experts so that it may also serve as an introduction to the higher reaches of inner model theory. It contains a good deal of background material, some of it unpublished folklore, and includes many references to the literature to guide further reading. An introductory essay serves to place the new results in their broader context.

This is a landmark work in inner model theory that should be in every set theorist's library.

JOHN R. STEEL is Professor of Mathematics at the University of California, Berkeley. He is a recipient of the Carol Karp Prize of the Association for Symbolic Logic, the Hausdorff Medal of the European Set Theory Society, and the Humboldt Prize.

LECTURE NOTES IN LOGIC

A Publication of The Association for Symbolic Logic

This series serves researchers, teachers, and students in the field of symbolic logic, broadly interpreted. The aim of the series is to bring publications to the logic community with the least possible delay and to provide rapid dissemination of the latest research. Scientific quality is the overriding criterion by which submissions are evaluated.

Editorial Board

Zoé Chatzidakis

DMA, Ecole Normale Supérieure, Paris

Denis Hirschfeldt

Department of Mathematics, University of Chicago

Leon Horsten

Department of Philosophy, Universität Konstanz, Germany

Paul Larson, Managing Editor

Department of Mathematics, Miami University

Paulo Oliva

School of Electronic Engineering and Computer Science, Queen Mary University of London

Martin Otto

Department of Mathematics, Technische Universität Darmstadt, Germany

Slawomir Solecki

Department of Mathematics, Cornell University, New York

More information, including a list of the books in the series, can be found at http://aslonline.org/books/lecture-notes-in-logic/

LECTURE NOTES IN LOGIC 51

A Comparison Process for Mouse Pairs

JOHN R. STEEL

University of California, Berkeley

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108840682

DOI: 10.1017/9781108886840

Association for Symbolic Logic Richard A. Shore, Publisher Department of Mathematics, Cornell University, Ithaca, NY 14853 http://aslonline.org

© Association for Symbolic Logic 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-84068-2 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Colleen, David, Bobby, and my parents

CONTENTS

PREFACE.		X1
CHAPTER	1. Introduction	1
1.1.	Large cardinals and the consistency strength hierarchy	1
1.2.	Inner model theory	3
1.3.	Mice and iteration strategies	4
1.4.	HOD in models of determinacy	6
1.5.	Least branch hod pairs	7
1.6.	Comparison and the mouse pair order	9
1.7.	Hod pair capturing	12
1.8.	Constructing mouse pairs	13
1.9.	The comparison argument	15
1.10.	Plan of the book	17
CHAPTER	2 Drei Mina Dieg	19
2.1.	2. PRELIMINARIES Extenders and ultrapowers	19
2.1.	Pure extender premice	21
2.2.	Projecta and cores	24
2.3.	Elementarity of maps	33
2.5.	$r\Sigma_k$ cofinality and near elementarity	39
2.6.	Iteration trees on premice	48
2.7.	Iteration strategies	55
2.8.	Comparison and genericity iterations	61
2.9.	Coarse structure	65
2.7.	Coarse structure	03
CHAPTER	3. BACKGROUND-INDUCED ITERATION STRATEGIES	69
3.1.	Full background extender constructions	70
3.2.	Resurrection maps	76
3.3.	A Shift Lemma for conversion stages	79
3.4.	Conversion systems	83
3.5.	Induced iteration strategies	90
3.6.	Internal consistency for iteration strategies	91
3.7.	Measurable projecta	93

viii	CONTENTS	
3.8.	Projecta with measurable cofinality	97
CHAPTER 4. MORE MICE AND ITERATION TREES		
4.1.	Mice with projectum-free spaces)2
4.2.	Other soundness patterns	
4.3.	Elementarity for premouse embeddings	14
4.4.	Plus trees	28
4.5.	Copy maps, lifted trees, and levels of elementarity	35
4.6.	Iteration strategies and comparison	18
4.7.	PFS constructions and their resurrection maps	53
4.8.	Conversion systems and induced strategies	58
4.9.	Backgrounds for plus extenders 16	59
4.10.	Solidity in PFS constructions	77
4.11.	The Bicephalus Lemma)()
CHAPTER	5. Some properties of induced strategies20)3
5.1.	Copying commutes with conversion)3
5.2.	Positionality and strategy coherence	
5.3.	Pullback consistency	
5.4.	Internal lift consistency	14
5.5.	A reduction to λ -separated trees	18
CHAPTER	6. NORMALIZING STACKS OF ITERATION TREES	21
6.1.	Normalizing trees of length 2	22
6.2.	Normalizing $\mathcal{T}^{}\langle F \rangle$	
6.3.	The extender tree V^{ext}	
6.4.	Tree embeddings	15
6.5.	Normalizing $\mathcal{T} \cap \mathcal{U}$	
6.6.	The branches of $W(\mathcal{T}, \mathcal{U})$	
6.7.	Quasi-normalizing stacks of plus trees	77
6.8.	Copying commutes with normalization	32
6.9.	Normalizing longer stacks	38
CHAPTER	7. STRATEGIES THAT CONDENSE AND NORMALIZE WELL 29	91
7.1.	The definitions	92
7.2.	Coarse Γ -Woodins and Γ -universality	00
7.3.	Strong unique iterability from UBH)5
7.4.	Fine strategies that normalize well	
7.5.	Fine strategies that condense well	27
7.6.	Pure extender pairs	
CHAPTER	8. Comparing iteration strategies	41
8.1.	Iterating into a backgrounded premouse	
8.2.	Extending tree embeddings	

	CONTENTS	ix
8.3.	Resurrection embeddings as branch embeddings	352
8.4.	Iterating into a backgrounded strategy	
CHAPTER	9. FINE STRUCTURE FOR THE LEAST BRANCH HIERARCHY	387
9.1.	Least branch premice	388
9.2.	Least branch hod pairs	394
9.3.	Mouse pairs and the Dodd-Jensen Lemma	
9.4.	Background constructions	401
9.5.	Comparison and the hod pair order	410
9.6.	The existence of cores	
CHAPTER	10. PHALANX ITERATION INTO A CONSTRUCTION	441
10.1.	The Bicephalus Lemma	441
10.2.	The Pseudo-premouse Lemma	450
10.3.	Proof of Lemma 9.6.5	463
10.4.	Some successful background constructions	484
10.5.	UBH holds in hod mice	
CHAPTER	11. HOD IN THE DERIVED MODEL OF A HOD MOUSE	501
11.1.	Generic interpretability	501
11.2.	Mouse limits	503
11.3.	HOD as a mouse limit	506
11.4.	HOD mice satisfy $V = K$	516
11.5.	Further results	
REFERENC	CES	527
INDEV		533

PREFACE

This book began life as a long research article titled *Normalizing iteration trees* and comparing iteration strategies. I found the main ideas behind the comparison process that motivates it in Spring 2015, and circulated a handwritten manuscript shortly afterward. I circulated a preliminary form of the present book in April 2016, and have revised and expanded it many times since then, as various significant gaps and errors showed up. The last major revisions took place in 2020-2021.

Beyond making the book correct, one of my goals has been to make it accessible. I have been encouraged here by the fact that the new definitions and results are actually quite elementary. They rest on the theory of *Fine structure and iteration trees* (FSIT), and can be seen as completing that theory in a certain way. The comparison theorem for pure extender mice that is at the heart of FSIT is deficient, in that how two mice compare depends on which iteration strategies are chosen to compare them. Here we remedy that defect, by developing a method for comparing the strategies. The result is a comparison theorem for *mouse pairs* parallel to the FSIT comparison theorem for pure extender mice. We then use the comparison process underlying that theorem to develop a fine structure theory for *strategy mice* parallel to the fine structure theory for pure extender mice of FSIT.

There are points at which descriptive set theory under determinacy hypotheses becomes relevant. At these points, it would help to have read the later sections of [70]. However, I have included enough material that the reader familiar with FSIT but shaky on determinacy should be able to follow the exposition. Our work here is motivated by the problem of analyzing ordinal definability in models of Axiom of Determinacy, but the prerequisite for following most of it is just inner model theory at the level of FSIT.

Inner model theory is sufficiently mature that many of its basic definitions and much of its notation have been streamlined and standardized over time. I have tried to contribute to that process, by adopting common definitions and notations where possible, and streamlining where I saw a chance to do so. Chapters 2 and 3 review and summarize the standard material on which the book rests, while Chapter 4 makes some revisions to it that are needed later.

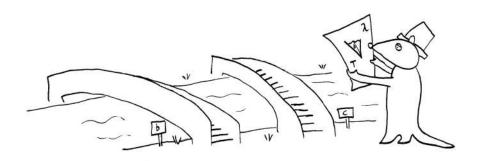
The papers [77], [80], [78], [81], [64], [73], and [17], written in 2016-2018, have extended the work described here in various directions. The most important of

xii Preface

the remaining open problems is whether, assuming determinacy, there actually are mouse pairs at every appropriate level of logical complexity. This is one instance of the fundamental iterability problem of inner model theory, still open after all these years. I suspect that it is the most accessible instance of that problem.

Acknowledgements. Special thanks to Xianghui Shi, who converted my hand-written manuscript to a LATEX document in summer 2015, and thereby helped me over the "getting started" barrier. I worked on the first draft in Fall 2015 as a Simons Foundation fellow at the Isaac Newton Institute for Mathematical Sciences in the programme 'Mathematical, Foundational and Computational Aspects of the Higher Infinite'. My thanks to the institute and its staff for their support. Thanks also to the participants in the annual summer workshops in inner model theory, who helped me clarify the material here (and inspired the drawing below). Special thanks to Benjamin Siskind for his help in identifying and correcting some nontrivial errors. Finally, thanks to Nam Trang for his input at various stages, including help with tikzpicture, to Thomas Piecha for his help with formatting, to the referees for their input, and to Paul Larson for his work as editor.

My larger intellectual debts are too numerous to list carefully. The generation before mine opened up the beautiful world of large cardinals, determinacy, and inner models, and many people have contributed to its development since then. Ronald Jensen, Tony Martin, and Bill Mitchell have had a special influence on my own work. In the immediate environment of this book, the work of Grigor Sargsyan and Hugh Woodin on the analysis of HOD in models of the Axiom of Determinacy plays an important role. My thanks to all these people.



A mouse with a strategy Gregor Schindler, 2019