A Comparison Process for Mouse Pairs

This book proves some important new theorems in the theory of canonical inner models for large cardinal hypotheses, a topic of central importance in modern set theory. In particular, the author “completes” the theory of *Fine Structure and Iteration Trees* (FSIT) by proving a comparison theorem for mouse pairs parallel to the FSIT comparison theorem for pure extender mice, and then using the underlying comparison process to develop a fine structure theory for strategy mice.

Great effort has been taken to make the book accessible to non-experts so that it may also serve as an introduction to the higher reaches of inner model theory. It contains a good deal of background material, some of it unpublished folklore, and includes many references to the literature to guide further reading. An introductory essay serves to place the new results in their broader context.

This is a landmark work in inner model theory that should be in every set theorist’s library.

John R. Steel is Professor of Mathematics at the University of California, Berkeley. He is a recipient of the Carol Karp Prize of the Association for Symbolic Logic, the Hausdorff Medal of the European Set Theory Society, and the Humboldt Prize.
LECTURE NOTES IN LOGIC

A Publication of The Association for Symbolic Logic

This series serves researchers, teachers, and students in the field of symbolic logic, broadly interpreted. The aim of the series is to bring publications to the logic community with the least possible delay and to provide rapid dissemination of the latest research. Scientific quality is the overriding criterion by which submissions are evaluated.

Editorial Board
Zoé Chatzidakis
DMA, Ecole Normale Supérieure, Paris

Denis Hirschfeldt
Department of Mathematics, University of Chicago

Leon Horsten
Department of Philosophy, Universität Konstanz, Germany

Paul Larson, Managing Editor
Department of Mathematics, Miami University

Paulo Oliva
School of Electronic Engineering and Computer Science, Queen Mary University of London

Martin Otto
Department of Mathematics, Technische Universität Darmstadt, Germany

Slawomir Solecki
Department of Mathematics, Cornell University, New York

More information, including a list of the books in the series, can be found at http://aslonline.org/books/lecture-notes-in-logic/
LECTURE NOTES IN LOGIC 51

A Comparison Process for Mouse Pairs

JOHN R. STEEL
University of California, Berkeley

ASSOCIATION FOR SYMBOLIC LOGIC

Cambridge University Press & Assessment
978-1-108-84068-2 — A Comparison Process for Mouse Pairs
John R. Steel
Frontmatter
More Information
For Colleen, David, Bobby, and my parents
CONTENTS

Preface ... xi

Chapter 1. Introduction .. 1
 1.1. Large cardinals and the consistency strength hierarchy 1
 1.2. Inner model theory .. 3
 1.3. Mice and iteration strategies 4
 1.4. HOD in models of determinacy 6
 1.5. Least branch hod pairs .. 7
 1.6. Comparison and the mouse pair order 9
 1.7. Hod pair capturing .. 12
 1.8. Constructing mouse pairs 13
 1.9. The comparison argument 15
 1.10. Plan of the book .. 17

Chapter 2. Preliminaries .. 19
 2.1. Extenders and ultrapowers 19
 2.2. Pure extender premice .. 21
 2.3. Projecta and cores ... 24
 2.4. Elementarity of maps .. 33
 2.5. $r\Sigma_k$ cofinality and near elementarity 39
 2.6. Iteration trees on premice 48
 2.7. Iteration strategies .. 55
 2.8. Comparison and genericity iterations 61
 2.9. Coarse structure .. 65

Chapter 3. Background-induced Iteration Strategies 69
 3.1. Full background extender constructions 70
 3.2. Resurrection maps ... 76
 3.3. A Shift Lemma for conversion stages 79
 3.4. Conversion systems .. 83
 3.5. Induced iteration strategies 90
 3.6. Internal consistency for iteration strategies 91
 3.7. Measurable projecta .. 93
CONTENTS

3.8. Projecta with measurable cofinality 97

CHAPTER 4. MORE MICE AND ITERATION TREES 101

4.1. Mice with projectum-free spaces 102
4.2. Other soundness patterns 111
4.3. Elementarity for premouse embeddings 114
4.4. Plus trees .. 128
4.5. Copy maps, lifted trees, and levels of elementarity 135
4.6. Iteration strategies and comparison 148
4.7. PFS constructions and their resurrection maps 153
4.8. Conversion systems and induced strategies 158
4.9. Backgrounds for plus extenders 169
4.10. Solidity in PFS constructions 177
4.11. The Bicephalus Lemma 200

CHAPTER 5. SOME PROPERTIES OF INDUCED STRATEGIES 203

5.1. Copying commutes with conversion 203
5.2. Positionality and strategy coherence 208
5.3. Pullback consistency 211
5.4. Internal lift consistency 214
5.5. A reduction to λ-separated trees 218

CHAPTER 6. NORMALIZING STACKS OF ITERATION TREES 221

6.1. Normalizing trees of length 2 222
6.2. Normalizing $T^>(F)$ 231
6.3. The extender tree V^{ext} 243
6.4. Tree embeddings .. 245
6.5. Normalizing T^U .. 250
6.6. The branches of $W(T,U)$ 265
6.7. Quasi-normalizing stacks of plus trees 277
6.8. Copying commutes with normalization 282
6.9. Normalizing longer stacks 288

CHAPTER 7. STRATEGIES THAT CONDENSE AND NORMALIZE WELL 291

7.1. The definitions ... 292
7.2. Coarse Γ-Woodins and Γ-universality 300
7.3. Strong unique iterability from UBH 305
7.4. Fine strategies that normalize well 314
7.5. Fine strategies that condense well 327
7.6. Pure extender pairs 334

CHAPTER 8. COMPARING ITERATION STRATEGIES 341

8.1. Iterating into a backgrounded premouse 342
8.2. Extending tree embeddings 347
CONTENTS

8.3. Resurrection embeddings as branch embeddings 352
8.4. Iterating into a backgrounded strategy 356

CHAPTER 9. FINE STRUCTURE FOR THE LEAST BRANCH HIERARCHY . . 387
9.1. Least branch premice ... 388
9.2. Least branch hod pairs ... 394
9.3. Mouse pairs and the Dodd-Jensen Lemma 397
9.4. Background constructions 401
9.5. Comparison and the hod pair order 410
9.6. The existence of cores .. 415

CHAPTER 10. PHALANX ITERATION INTO A CONSTRUCTION 441
10.1. The Bicephalus Lemma ... 441
10.2. The Pseudo-premouse Lemma 450
10.3. Proof of Lemma 9.6.5 .. 463
10.4. Some successful background constructions 484
10.5. UBH holds in hod mice .. 487

CHAPTER 11. HOD IN THE DERIVED MODEL OF A HOD MOUSE 501
11.1. Generic interpretability .. 501
11.2. Mouse limits .. 503
11.3. HOD as a mouse limit ... 506
11.4. HOD mice satisfy $V = K$ 516
11.5. Further results .. 522

REFERENCES .. 527

INDEX ... 533
This book began life as a long research article titled *Normalizing iteration trees and comparing iteration strategies*. I found the main ideas behind the comparison process that motivates it in Spring 2015, and circulated a handwritten manuscript shortly afterward. I circulated a preliminary form of the present book in April 2016, and have revised and expanded it many times since then, as various significant gaps and errors showed up. The last major revisions took place in 2020-2021.

Beyond making the book correct, one of my goals has been to make it accessible. I have been encouraged here by the fact that the new definitions and results are actually quite elementary. They rest on the theory of *Fine structure and iteration trees* (FSIT), and can be seen as completing that theory in a certain way. The comparison theorem for pure extender mice that is at the heart of FSIT is deficient, in that how two mice compare depends on which iteration strategies are chosen to compare them. Here we remedy that defect, by developing a method for comparing the strategies. The result is a comparison theorem for *mouse pairs* parallel to the FSIT comparison theorem for pure extender mice. We then use the comparison process underlying that theorem to develop a fine structure theory for *strategy mice* parallel to the fine structure theory for pure extender mice of FSIT.

There are points at which descriptive set theory under determinacy hypotheses becomes relevant. At these points, it would help to have read the later sections of [70]. However, I have included enough material that the reader familiar with FSIT but shaky on determinacy should be able to follow the exposition. Our work here is motivated by the problem of analyzing ordinal definability in models of Axiom of Determinacy, but the prerequisite for following most of it is just inner model theory at the level of FSIT.

Inner model theory is sufficiently mature that many of its basic definitions and much of its notation have been streamlined and standardized over time. I have tried to contribute to that process, by adopting common definitions and notations where possible, and streamlining where I saw a chance to do so. Chapters 2 and 3 review and summarize the standard material on which the book rests, while Chapter 4 makes some revisions to it that are needed later.

The papers [77], [80], [78], [81], [64], [73], and [17], written in 2016-2018, have extended the work described here in various directions. The most important of
the remaining open problems is whether, assuming determinacy, there actually are mouse pairs at every appropriate level of logical complexity. This is one instance of the fundamental iterability problem of inner model theory, still open after all these years. I suspect that it is the most accessible instance of that problem.

Acknowledgements. Special thanks to Xianghui Shi, who converted my handwritten manuscript to a LaTeX document in summer 2015, and thereby helped me over the “getting started” barrier. I worked on the first draft in Fall 2015 as a Simons Foundation fellow at the Isaac Newton Institute for Mathematical Sciences in the programme ‘Mathematical, Foundational and Computational Aspects of the Higher Infinite’. My thanks to the institute and its staff for their support. Thanks also to the participants in the annual summer workshops in inner model theory, who helped me clarify the material here (and inspired the drawing below). Special thanks to Benjamin Siskind for his help in identifying and correcting some nontrivial errors. Finally, thanks to Nam Trang for his input at various stages, including help with tikzpicture, to Thomas Piecha for his help with formatting, to the referees for their input, and to Paul Larson for his work as editor.

My larger intellectual debts are too numerous to list carefully. The generation before mine opened up the beautiful world of large cardinals, determinacy, and inner models, and many people have contributed to its development since then. Ronald Jensen, Tony Martin, and Bill Mitchell have had a special influence on my own work. In the immediate environment of this book, the work of Grigor Sargsyan and Hugh Woodin on the analysis of HOD in models of the Axiom of Determinacy plays an important role. My thanks to all these people.