Contents

Preface to the Second Edition
Preface to the First Edition
Acknowledgments
Useful General Formulas and Notation, Conventions, Abbreviations

Introduction
References for the Introduction

Part I Before Supersymmetry

1 Phases of Gauge Theories
1.1 Spontaneous Symmetry Breaking
1.2 Spontaneous Breaking of Gauge Symmetries
1.3 Phases of Yang–Mills Theories
1.4 Appendix: Basics of Conformal Invariance
References for Chapter 1

2 Kinks and Domain Walls
2.1 Kinks and Domain Walls (at the Classical Level)
2.2 Higher Discrete Symmetries and Wall Junctions
2.3 Domain Walls Antigravitate
2.4 Quantization of Solitons (Kink Mass at One Loop)
2.5 Charge Fractionalization
References for Chapter 2

3 Vortices and Flux Tubes (Strings)
3.1 Vortices and Strings
3.2 Non-Abelian Vortices or Strings
3.3 Fermion Zero Modes
3.4 String-Induced Gravity
3.5 Appendix: Calculation of the Orientational Part of the World-Sheet Action for Non-Abelian Strings
3.6 Appendix: Two-String Junctions and Z Strings in SM
References for Chapter 3

4 Monopoles and Skyrmions
4.1 Magnetic Monopoles
4.2 Skyrmions
4.3 Appendix: Elements of Group Theory for SU(N)
References for Chapter 4

5 Instantons

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Tunneling in Non-Abelian Yang–Mills Theory</td>
<td>174</td>
</tr>
<tr>
<td>5.2 Euclidean Formulation of QCD</td>
<td>182</td>
</tr>
<tr>
<td>5.3 BPST Instantons: General Properties</td>
<td>185</td>
</tr>
<tr>
<td>5.4 Explicit Form of the BPST Instanton</td>
<td>189</td>
</tr>
<tr>
<td>5.5 Applications: Baryon Number Nonconservation at High Energy</td>
<td>222</td>
</tr>
<tr>
<td>5.6 Instantons at High Energies</td>
<td>229</td>
</tr>
<tr>
<td>5.7 Other Ideas Concerning Baryon Number Violation</td>
<td>238</td>
</tr>
<tr>
<td>5.8 Appendices</td>
<td>240</td>
</tr>
<tr>
<td>References for Chapter 5</td>
<td>244</td>
</tr>
</tbody>
</table>

6 Isotropic (Anti)ferromagnet: O(3) Sigma Model and Extensions, Including CP(N − 1)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 O(3) Sigma Model</td>
<td>249</td>
</tr>
<tr>
<td>6.2 Extensions: CP(N − 1) Models</td>
<td>252</td>
</tr>
<tr>
<td>6.3 Asymptotic Freedom in the O(3) Sigma Model</td>
<td>257</td>
</tr>
<tr>
<td>6.4 Instantons in CP(1)</td>
<td>266</td>
</tr>
<tr>
<td>6.5 The Goldstone Theorem in Two Dimensions</td>
<td>269</td>
</tr>
<tr>
<td>References for Chapter 6</td>
<td>273</td>
</tr>
</tbody>
</table>

7 False-Vacuum Decay and Related Topics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 False-Vacuum Decay</td>
<td>276</td>
</tr>
<tr>
<td>7.2 False-Vacuum Decay: Applications</td>
<td>284</td>
</tr>
<tr>
<td>References for Chapter 7</td>
<td>297</td>
</tr>
</tbody>
</table>

8 Chiral and Other Anomalies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Chiral Anomaly in the Schwinger Model</td>
<td>299</td>
</tr>
<tr>
<td>8.2 Anomalies in QCD and Similar Non-Abelian Gauge Theories</td>
<td>316</td>
</tr>
<tr>
<td>8.3 ’t Hooft Matching and Its Physical Implications</td>
<td>324</td>
</tr>
<tr>
<td>8.4 Scale Anomaly</td>
<td>327</td>
</tr>
<tr>
<td>8.5 One-Form Anomalies</td>
<td>328</td>
</tr>
<tr>
<td>References for Chapter 8</td>
<td>335</td>
</tr>
</tbody>
</table>

9 Confinement in 4D Gauge Theories and Models in Lower Dimensions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Confinement in Non-Abelian Gauge Theories: Dual Meissner Effect</td>
<td>337</td>
</tr>
<tr>
<td>9.2 The ’t Hooft Limit and 1/N Expansion</td>
<td>339</td>
</tr>
<tr>
<td>9.3 Abelian Higgs Model in 1 + 1 Dimensions</td>
<td>362</td>
</tr>
<tr>
<td>9.4 CP(N − 1) at Large N</td>
<td>367</td>
</tr>
<tr>
<td>9.5 The ’t Hooft Model</td>
<td>374</td>
</tr>
<tr>
<td>9.6 Schwinger Model</td>
<td>388</td>
</tr>
<tr>
<td>9.7 Polyakov’s Confinement in 2 + 1 Dimensions</td>
<td>393</td>
</tr>
<tr>
<td>9.8 Appendix: Solving the O(N) Model at Large N</td>
<td>404</td>
</tr>
<tr>
<td>References for Chapter 9</td>
<td>410</td>
</tr>
</tbody>
</table>
Part II Introduction to Supersymmetry

10 Basics of Supersymmetry with Emphasis on Gauge Theories
10.1 Introduction
10.2 Spinors and Spinorial Notation
10.3 The Coleman–Mandula Theorem
10.4 Supersextension of the Poincaré Algebra
10.5 Superspace and Superfields
10.6 Superinvariant Actions
10.7 R Symmetries
10.8 Nonrenormalization Theorem for F Terms
10.9 Super-Higgs Mechanism
10.10 Spontaneous Breaking of Supersymmetry
10.11 Goldstinos
10.12 Digression: Two-Dimensional Supersymmetry
10.13 Supersymmetric Yang–Mills Theories
10.14 Supersymmetric Gluodynamics
10.15 One-Flavor Supersymmetric QCD
10.16 Hypercurrent and Anomalies
10.17 R Parity
10.18 Extended Supersymmetries in Four Dimensions
10.19 Instantons in Supersymmetric Yang–Mills Theories
10.20 Affleck–Dine–Seiberg Superpotential
10.21 Novikov–Shifman–Vainshtein–Zakharov β Function
10.22 The Witten Index
10.23 Q-Closed and Q-Exact Operators
10.24 Soft versus Hard Explicit Violations of Supersymmetry
10.25 Central Charges
10.26 Long versus Short Supermultiplets
10.27 Appendices
References for Chapter 10

11 Supersymmetric Solitons
11.1 Central Charges in Superalgebras
11.2 $\mathcal{N}=1$: Supersymmetric Kinks
11.3 $\mathcal{N}=2$: Kinks in Two-Dimensional Supersymmetric CP(1) Model
11.4 Domain Walls
11.5 Vortices in $D=3$ and Flux Tubes in $D=4$
11.6 Critical Monopoles
References for Chapter 11

Part III Solutions to Exercises

Chapter 1
Chapter 2
Chapter 3
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4</td>
<td>653</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>661</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>669</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>680</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>682</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>688</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>691</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>710</td>
</tr>
<tr>
<td>Index</td>
<td>712</td>
</tr>
</tbody>
</table>