Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr , Gary Huss Frontmatter <u>More Information</u>

Cosmochemistry

Cosmochemistry is a rapidly evolving field of planetary science and the second edition of this classic text reflects the exciting discoveries made over the past decade from new spacecraft missions. Topics covered include the synthesis of elements in stars, behavior of elements and isotopes in the early solar nebula and planetary bodies, and compositions of extra-terrestrial materials. Radioisotope chronology of the early Solar System is also discussed, as well as geochemical exploration of planets by spacecraft, and cosmochemical constraints on the formation of solar systems. Thoroughly updated throughout, this new edition features significantly expanded coverage of chemical fractionation and isotopic analyses; focus boxes covering basic definitions and essential background material on mineralogy, organic chemistry and quantitative topics; and a comprehensive glossary. An appendix of analytical techniques and end-of-chapter review questions, with solutions available at www.cambridge.org/cosmochemistry2e, also contribute to making this the ideal teaching resource for courses on the Solar System's composition as well as a valuable reference for early career researchers.

Harry Y. McSween, Jr. is Chancellor Professor Emeritus at the University of Tennessee. His research on meteorites and Mars has resulted in hundreds of scientific papers. He has authored/co-authored six books on planetary science, including the textbook *Planetary Geoscience* (Cambridge, 2019) and was co-investigator on four NASA spacecraft missions. He has received awards from the US National Academy of Sciences, Meteoritical Society, and American Geophysical Union, and is the namesake for an asteroid.

Gary R. Huss is Research Professor and Director of the W. M. Keck Cosmochemistry Laboratory, University of Hawai'i. He is grandson of H. H. Nininger, the father of modern meteoritics, and has 50 years of experience collecting and carrying out research on meteorites. He has published approximately 130 papers on cosmochemistry. He is a Fellow of, and has served as President of, the Meteoritical Society. He also has an asteroid named after him.

Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr , Gary Huss Frontmatter <u>More Information</u>

Cosmochemistry

Harry Y. McSween Jr. University of Tennessee

Gary R. Huss University of Hawai'i

Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr, Gary Huss Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108839839 DOI: 10.1017/9781108885263

© Harry Y. McSween Jr. and Gary R. Huss 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: McSween, Harry Y., author. | Huss, Gary R., author. Title: Cosmochemistry / Harry McSween Jr., University of Tennessee, Knoxville, Gary Huss, University of Hawaii, Manoa. Description: Second edition. | New York : Cambridge University Press, 2021. | Includes bibliographical references and index. Identifiers: LCCN 2021024813 (print) | LCCN 2021024814 (ebook) | ISBN 9781108839839 (hardback) | ISBN 9781108885263 (epub) Subjects: LCSH: Cosmochemistry. | BISAC: SCIENCE / Earth Sciences / General Classification: LCC QB450 .M37 2021 (print) | LCC QB450 (ebook) | DDC 523/.02–dc23 LC record available at https://lccn.loc.gov/2021024813 LC ebook record available at https://lccn.loc.gov/2021024814

ISBN 978-1-108-83983-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr , Gary Huss Frontmatter <u>More Information</u>

For Sue and Jackie

Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr , Gary Huss Frontmatter <u>More Information</u>

Contents

P	reface	<i>page</i> xiii
ı	Introduction to Cosmochemistry	1
	Overview	1
	I.I What Is Cosmochemistry?	1
	1.2 Geochemistry versus Cosmochemistry	2
	1.3 Beginnings of Cosmochemistry (and Geochemistry)	4
	1.4 The Tools of Cosmochemistry	15
	1.5 Relationship of Cosmochemistry to Other Disciplines	18
	Questions	19
	Suggestions for Further Reading	19
	Other References	19
2	Nuclides and Elements: The Building Blocks of Matter	20
	Overview	20
	2.1 Elementary Particles, Isotopes, and Elements	20
	2.2 Chart of the Nuclides: Organizing Elements by Their Nuclear Properties	22
	2.3 Radioactive Elements and Their Modes of Decay	25
	2.4 The Periodic Table: Organizing Elements by Their Chemical Properties	27
	2.5 Chemical Bonding	31
	2.6 Chemical and Physical Processes Relevant to Cosmochemistry	34
	Summary	35
	Questions	35
	Suggestions for Further Reading	35
	Other References	35
3	Origin of the Elements	37
	Overview	37
	3.1 In the Beginning	37
	3.2 Nucleosynthesis in Stars	40
	3.3 Origin of the Galaxy and Galactic Chemical Evolution	56
	Summary	58
	Questions	59
	Suggestions for Further Reading	59
	Other References	59
4	Solar System and Cosmic Abundances: Elements and Isotopes	60
	Overview	60
	4.1 Chemistry on a Grand Scale	60
	4.2 Historical Perspective	60

Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr, Gary Huss Frontmatter <u>More Information</u>

		Contents
4.2		(2
4.3	How Are Solar System Abundances Determined?	62
4.4	Determining Chemical Abundances in the Sun	62
4.5	Solar System Abundances of the Elements	72
4.6	Solar System Abundances of the Isotopes	72
4./	How Did Solar System Abundances Arise?	77
4.8	Differences between Solar System and Cosmic Abundances	/9
4.9	How Are Solar System Abundances Used in Cosmochemistry?	81
Sum	mary	82
Que	istions	83
Sugg Oth	estions for Further Reading er References	83 83
Pro	esolar Grains: A Record of Stellar Nucleosynthesis and Processes in	
Int	erstellar Snace	85
<u> </u>		00 25
51	Grains that Predate the Solar System	00 25
5.2	A Cosmochemical Detective Story	85
5.2	Recognizing Presolar Grains in Meteorites	89
5.4	Known Types of Presolar Grains	90
5 5	Locating and Identifying Presolar Grains	91
5.6	Characterizing Presolar Grains	91
5.0	Identification of Stellar Sources	93
5.6	Presolar Grains as Probes of Stellar Nucleosynthesis	98
5.0	Presolar Grains as Trocers of Circumstellar and Interstellar Environments	102
5 10	Presolar Grains as Process of the Early Solar System	102
Sum	marv	107
Oue	istions	107
Sug	vestions for Further Reading	107
Oth	er References	107
Me	teorites. Interplanetary Dust. and Lunar Samples	110
Ove	erview	110
6.1	Primitive versus Differentiated	110
6.2	Components of Chondrites	111
6.3	Chondrite Classification	115
6.4	Oxygen Isotopes in Chondrites	120
6.5	Interplanetary Dust Particles	121
6.6	Nonchondritic Meteorites	123
6.7	Primitive Achondrites	124
6.8	Magmatic Achondrites	127
6.9	Irons and Stony Irons	128
6.10	Lunar Samples and Meteorites	130
6.11	Martian Meteorites	130
6.12	Oxygen Isotopes in Differentiated Meteorites	133
6.13	Trading Rocks: Meteorites on Other Worlds	134
Sum	mary	134
	······· /	107
Que	stions	135
Que	stions restions for Further Reading	135

Contents

Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr , Gary Huss Frontmatter <u>More Information</u>

7	Element Fractionations by Cosmochemical and Geochemical Processes	139
	Overview	139
	7.1 What Are Element Fractionations and Why Are They Important?	139
	7.2 Condensation as a Fractionation Process	142
	7.3 Volatile Element Depletions	148
	7.4 Physical Fractionations in the Solar Nebula	150
	7.5 Igneous Fractionations	153
	7.6 Fractionations in Aqueous Systems	157
	7.7 Physical Fractionations on Planetesimals and Planets	158
	7.8 Differentiation of Rocky Planetesimals and Planets	159
	7.9 Differentiation of Giant Planets and Icy Satellites	160
	Summary	161
	Questions	
	Suggestions for Further Reading	162
	Other References	162
8	Stable-Isotope Fractionations by Cosmochemical and Geochemical Processes	165
	Overview	165
	8.1 What Are Isotopic Fractionations and Why Are They Important?	165
	8.2 Mass-Dependent Isotope Fractionations	166
	8.3 Mass-Independent Isotope Effects	181
	8.4 Isotopic Anomalies Inherited from the Sun's Parent Molecular Cloud	185
	Summary	187
	Questions	188
	Suggestions for Further Reading	189
	Other References	189
9	Radioisotopes as Chronometers	192
	Overview	192
	9.1 Methods of Age Determination	192
	9.2 Discussing Radiometric Ages and Time	193
	9.3 Basic Principles of Radiometric Age Dating	193
	9.4 Long-Lived Radionuclides	196
	9.5 Short-Lived Radionuclides	220
	Summary	232
	Questions	232
	Suggestions for Further Reading	233
	Other References	233
10	Chronology of the Solar System from Radioactive Isotopes	238
	Overview	238
	10.1 Age of the Elements and the Sun's Formation Environment	238
	10.2 Age of the Solar System	243
	10.3 Accretion, Differentiation, and Igneous History of Planets and the Moon	255
	10.4 Shock Ages and Impact Histories	259
	10.5 Cosmogenic Nuclides in Meteorites	262
	10.6 Up Next: Flight Instruments for In Situ Dating	265
	Summary	266
	Questions	266
	Suggestions for Further Reading	267
	Other References	267

ix

Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr , Gary Huss Frontmatter <u>More Information</u>

Organic Matter	
Overview	
II.I Volatility	
11.2 Condensation of Ices	
11.3 Accretion of Ices and the Snowline	
11.4 Noble Gases and How They Are Analyzed	
11.5 Noble Gas Components in Extraterrestrial Samples	
11.6 Planetary Atmospheres	
11.7 Extraterrestrial Organic Matter: Occurrence and Complexity	
11.8 Are Organic Compounds Interstellar, Nebular, or Planetary?	
11.9 Ices, Noble Gases, and Organic Matter in Planetesimals and Planets	
Summary	
Questions	
Suggestions for Further Reading	
Other References	
2 Planetesimals: Leftover Planetary Building Blocks	
Overview	
12.1 Millions and Millions	
12.2 Physical Properties of Planetesimals	
12.3 Spectroscopy and Taxonomy of Planetesimals, and Relation to Samples	
12.4 Orbital Distributions of Planetesimals	
12.5 Thermal Metamorphism, Aqueous Alteration, and Melting of Planetesimals	
12.6 Compositional and Thermal Structure of the Asteroid Belt	
12.7 Collisions among Planetesimals	
Summary	
Questions	
Suggestions for Further Reading	
Other References	
3 Chemistry of Planetesimals and Their Samples	
Overview	
13.1 The Value of Bulk Chemical Analyses	
13.2 Compositions of Chondrites and Primitive Planetesimals	
13.3 Geochemical Exploration of Dwarf Planet Ceres	
13.4 Compositions of IDPs and Comet Samples	
13.5 Compositions of Differentiated Meteorites	
13.6 Geochemical Exploration of Asteroid Vesta	
summary	
Questions	
Suggestions for Further Reading	
Other References	
4 Geochemical Exploration: The Moon and Mars as Case Studies	
Overview	
14.1 Why the Moon and Mars?	
14.2 Global Geologic Context for Lunar Geochemistry	
14.3 Geochemical Tools for Lunar Exploration	
14.4 Composition of the Lunar Crust	
14.5 Compositions of the Lunar Mantle and Core	

Contents

Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr , Gary Huss Frontmatter <u>More Information</u>

Contents

14.6	Geochemical Evolution of the Moon	354	
14.7	Global Geologic Context for Mars Geochemistry	355	
14.8	Geochemical Tools for Mars Exploration	356	
14.9	Composition of the Martian Crust	360	
14.10	Compositions of the Martian Mantle and Core	362	
14.1	Geochemical Evolution of Mars	364	
Sumi	nary	365	
Que	stions	366	
Sugg	estions for Further Reading	366	
Othe	er References	366	
15 Cos	smochemical Models for the Formation and Evolution of Solar Systems	370	
Ove	rview	370	
15.1	Constraining and Testing Models with Cosmochemistry	370	
15.2	From Gas and Dust to Stars and Our Sun	370	
15.3	Formation of the Accretion Disk and Planets	373	
15.4	Temperatures in the Accretion Disk	374	
15.5	Compositional Variations within the Accretion Disk	380	
15.6	How to Estimate Bulk Compositions of Planets	382	
15.7	Compositions and Differentiation of the Terrestrial Planets	385	
15.8	Compositions and Differentiation of the Giant Planets	390	
15.9	Orbital and Collisional Evolution of the Solar System	391	
15.10	D Inferring the Compositions of Exoplanets	393	
Sumi	nary	394	
Que	stions	395	
Sugg	estions for Further Reading	395	
Othe	er References	395	
Append	lix: Some Analytical Techniques Commonly Used in Cosmochemistry	400	
Glossary			
Index		429	

Color Plate section between pp. 322 and 323

xi

Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr , Gary Huss Frontmatter <u>More Information</u>

Preface

Cosmochemistry provides critical insights into the workings of our local star and its stellar companions throughout the galaxy, the origin and timing of our solar system's birth, and the complex processes inside planetesimals and planets (including our own) as they evolve. Much of the database of cosmochemistry comes from laboratory analyses of elements, compounds, and isotopes in our modest collections of extraterrestrial samples. A growing part of the cosmochemistry database is gleaned from remotesensing measurements by spacecraft instruments, which provide chemical analyses and geologic context for other planets, moons, asteroids, and comets. Because the samples analyzed by cosmochemists are typically so small and valuable, or must be analyzed on bodies many millions of miles distant, this discipline leads in the development of new analytical technologies for use in the laboratory or on spacecraft. These technologies then spread to geochemistry, materials science, and other fields where precise analyses of tiny samples are important.

Despite its cutting-edge qualities and often newsworthy discoveries, cosmochemistry is an orphan. It does not fall clearly within the purview of chemistry, physics, geology, astronomy, or biochemistry but is rather an amalgam of parts of these disciplines. Because it has no natural home or constituency, cosmochemistry is usually taught (if it is taught at all) directly from its scientific literature (admittedly challenging reading) or from specialized books on meteorites and planetary science. In crafting the original edition of this textbook, we attempted to remedy that shortcoming. In this thoroughly revised second edition, we have incorporated new discoveries made and novel insights gleaned during the last decade. We have tried to make this subject accessible to advanced undergraduate and graduate students with diverse academic backgrounds, although we do presume some prior exposure to basic chemistry. This goal may sometimes lead to uneven treatment of some subjects, and our readers should understand that our intended audience is broad.

Cosmochemistry is advancing so rapidly that we can only hope to provide a snapshot of the discipline as it is currently understood and practiced. We have found even that to be a challenge because we could not hope to possess expertise in all the subjects encompassed by this discipline. We have drawn heavily on the contributions of many colleagues, especially those who educate by writing thoughtful reviews. That assistance is gratefully acknowledged through our annotated suggestions for further reading at the end of each chapter.

The topics covered in the chapters of this book include the following, in this order:

• Introduction to how cosmochemistry developed, and to how it differs from geochemistry

• Basic review of the characteristics and behaviors of elements and isotopes

• Discussion of how elements are synthesized within stars, and how the chemistry of the galaxy has evolved over time

• Assessment of the abundances of elements and isotopes in the solar system, and how they are measured

• Description of presolar grains found in meteorites, and how they constrain nucleosynthesis in stars and processes in interstellar space

• Introduction to meteorites, interplanetary dust particles, and lunar samples

• Consideration of processes that have fractionated elements in interstellar space, in the solar nebula, and within planetary bodies

• Consideration of processes that fractionate stable isotopes, as well as isotopic anomalies inherited from the Sun's parent molecular cloud

• Explanation of how long-lived and short-lived radioactive isotopes are used to quantify solar system history

• Synthesis of the radiometric age of the solar system and the ages of its constituents

• Assessment of the solar system's most volatile materials: ices, noble gases, and organic matter

• Survey of planetesimals to provide context on planetary building blocks

• Assessment of the chemistry of asteroids and comets, based on the samples we have of them and on spacecraft remote sensing

Cambridge University Press 978-1-108-83983-9 — Cosmochemistry Harry McSween, Jr, Gary Huss Frontmatter <u>More Information</u>

xiv

• Examples of modern geochemical exploration of solar system bodies: the Moon and Mars

• Synthesis and review of the formation of solar systems, from the perspective of cosmochemistry

• Appendix describing some important analytical methods used in cosmochemistry

More established disciplines are taught using tried-andtrue methods and examples, the results of generations of pedagogical experimentation. Cosmochemistry does not yet offer that. Most of those who dare to teach cosmochemistry, including the authors of this book, have never actually been students in a cosmochemistry course. In the authors' case, we have learned directly from a handful of scientists who have guided our introduction to the field, including Calvin Alexander, Bob Pepin, Ed Anders, Jim Hays, Dick Holland, Ian Hutcheon, Klaus Keil, Roy Lewis, Dimitri Papanastassiou, Jerry Wasserburg, and John Wood, and indirectly from many professional colleagues and our own students. We hope that this introduction to cosmochemistry will guide other students and their teachers as they explore together this exciting, interdisciplinary subject, and that they will enjoy the experience as we have.