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CHAPTER 1

Introduction

1.1 GENERAL NATURE OF PDE

It is no exaggeration to state that partial diferential equations (PDE) have played a vital
role in the development of science and technology, primarily since the beginning of
the twentieth century. In the earlier stage, PDE were mainly used to describe physical
phenomena, like vibrations of strings, heat conduction in solids, transport phenomena, to
mention a few. Later, with the advantage of mathematical modelling, the scope of using
PDE for the description of phenomena occurring in biology, economics and even sociology
became prominent.

Since the days of Newton or even earlier, many have attempted to describe physical
processes using mathematics.1 Such a mathematical description oven leads to linear
diferential, integral and even integro-diferential equations. |us, a large number of PDE
naturally come from mathematical physics. |e initial developments in PDE, though, were
mainly geared towards obtaining solutions to a particular physical or engineering problem,
it was soon realized that many of the problems will have common features and similarities.
|is naturally led to the grouping of PDE that can be tackled in a single framework. |is
automatically leads to the abstraction of the subject and the theoretical analysis that follows,
hence, becomes more important. |is is one of the features we try to follow in the present
book. Indeed, unlike ordinary diferential equations (ODE), all PDE including the linear
ones cannot be treated in a single theoretical framework, leading to the necessity of a
classiocation. In fact, due to the diverse nature of physical phenomena, we remark that
we cannot classify all the PDE. Nevertheless, a fairly good classiocation is available for the
second-order equations and interestingly a large number of physical and other problems
lead to second-order equations. Also, for the three important classes of equations, namely
elliptic, hyperbolic and parabolic, general theories have been developed.

As mentioned above, a wide class of physical problems is described by second-order
linear diferential equations of the form

n3

i,j=1

aij(x)uxixj +

n3

i=1

bi(x)uxi + c(x)u = f(x). (1.1)

1It is a historical fact that the calculus was born during such a process.
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2 INTRODUCTION

Here the variable x varies in an open set in the physical space =
n, n = 1, 2, 3 and the

coeïcients aij, bi and c are known from the physical process; u is the unknown function
and f denotes an external quantity, if any, innuencing the physical process.

We only mention a few real-world situations where PDE occur. For more examples and
their detailed discussion, the reader is referred to Barták et al. (1991), Markowitz (2005),
Murray (2003), Rhee et al. (1986), and Vladimirov (1984).

Many problems in mechanics like vibrations of strings, rods, membranes and three-
dimensional objects and also themathematical description of electromagnetic waves lead to
the equation of vibrations, which is the wave equation in one more space dimension. If the
mean free path of the particles is much larger than their dimensions, then the propagation
of a particle may be more accurately described by an equation, in comparison with the
difusion equation, called the transport or kinetic equation. |is is also called the Boltzmann
equation. |is is an integro-diferential equation.

|e Heisenberg principle states that the position of a particle and its momentum
cannot be simultaneously described, according to the laws of quantummechanics.|us, for
example, the position of a quantum particle can be conormed only with certain probability.
|e Schrödinger9s equation is an attempt to describe the dynamics of a quantum particle of
a given mass moving in an external force oeld with a given potential. Reaction3Difusion
equations describe the interaction of two or more chemical concentrations of distinct
difusivity coeïcients, in a chemical or biological process. |ese equations are also used
in the modelling of pattern formation and form an important part ofMathematical Biology
and constitute a system of non-linear difusion equations.

|e equation of heat difusion in a medium and the difusion of a chemical species are
described by the heat or difusion equation. Euler9s equations of gas dynamics describe the
dynamics of an ideal nuid, that is, a nuid with no or negligible viscosity. |ese equations
form a system of orst-order hyperbolic equations. In a particular situation where liquid
is incompressible and has a potential, these equations reduce to the Poisson9s equation
for the potential function. |e system of Maxwell9s equations describe the dynamics of a
charged particle in amediumwith varying electromagnetic oeld, invokingAmpere9s law and
Faraday9s law. In some particular cases, each component of the electric and magnetic oelds
satisoes the telegraph equation.

1.2 TWO EXAMPLES

|e following two situations perhaps describe a general nature in the analysis of solutions
to PDE.|ese are quite simple to state and involve second-order equations in two variables.
|e equations are the Laplace equation, the heat or difusion equation and the wave
equation: Liu = 0, i = 1, 2, 3, where

L1 = �
2
t
+ �

2
x
, L2 = �t − �

2
x
and L3 = �

2
t
− �

2
x
.
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1.2 Two Examples 3

|e orst situation involves the determination of solutions of Liu = 0, i = 1, 2, 3 with
prescribed data on the boundary of a rectangle ABCD with the side AB situated on the
x-axis in the x2t plane.Withoutmuch concern whether to prescribe u or its orst derivatives
on the sides of ABCD, let us dwell on the number of conditions required for each of the
operators Li, in order to determine a solution of Liu = 0. It turns out that L1 requires four
conditions one each on the four sides of the rectangle ABCD; L2 requires three conditions
one each on the sides AB, BC and AD of the rectangle ABCD; L3 requires four conditions 3
two on AB and one each on BC and AD of the rectangle ABCD.

Note that all the three operators are linear and of second order. Yet, the number of data to
be prescribed and the part of the boundary where to be placed become important in order to
determine a solution. Apparently, there is no simple explanation for this anomaly. Perhaps
the reader will ond an answer aver studying the relevant chapters in the book. |is is quite
diferent from the analysis of an initial value problem (IVP) of a system of linear ODE; here
the problem can be studied for a system of any order in a single framework. However, in
the case of PDE, as the above examples exhibit, it is not possible to do an analysis even for
second-order linear equations in two dimensions, in a single framework. |is leads to the
notion of a classiocation of PDE, and a particular condition on the data like initial values or
boundary values depends on the type of PDE under consideration.

|e second situation also concerns the operators Li, but nowwith regard toweak solutions
of them. A continuous or a locally integrable function u deoned in an open set « in =

2 is
said to be a weak solution of Liu = 0 for i = 1, 2, 3, if . u(x, t)Li�(x, t) dxdt = 0 for all
� * C>

c
(«).

It is shown in Chapter 9 that any continuous or locally integrable function u of the form
�(x ± t) is a weak solution for L3 and thus it can admit discontinuous (weak) solutions.
For the operators L1 and L2, it turns out that any weak solution is in fact a C> function,
may be aver making corrections in a set of measure zero. |e apparently strange behavior of
the operators L1 and L2 cannot be explained in simple terms and the reader will not ond a
complete answer in this book!|eoperators L1 and L3 are quite diferent, but the operator L2
may share some properties with L1 (regularity) and some other properties with L3 (energy
estimates).

|e above two situations describe, we hope, the complexities that are involved in the
analysis of PDE.|ere is indeed constant evolution of the subject as andwhen some peculiar
phenomenon is observed through an example or otherwise. In this connection, it is an
interesting fact that a somewhat true picture of linear operators started emerging only aver
the work of Peetre (1960), even though there were already quite many advancements in the
modern theory of PDEwhich had emerged through the works of Leray, Petrowski, Schwartz
and others. With appropriate domain and range of the operator, what Peetre showed was
that the linear operators are precisely the local operators. |is means that suppPu ⊂ suppu,
where P is linear and u is in its domain. |is then led to the discovery of pseudo-diferential
operators and Fourier integral operators. Roughly speaking, the inverse of an elliptic operator
is a pseudo-diferential operator and the inverse of a wave operator is a Fourier integral
operator (see Nirenberg, 1976).
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4 INTRODUCTION

1.3 DESCRIPTION OF THE CONTENTS

|is then sets the stage for the present book, with a modest list of contents.

" |e orst chapter brieny discusses certain general notions of PDE, their occurrence in
physical and other sciences and engineering. It also describes the contents of the book,
chapter-wise.

" |e theory2 of modern PDE is quite vast and demands a great amount of prerequisites
such as Lebesgue integration theory, functional analysis, distributions and Sobolev
spaces. Since we are discussing mostly classical theory in the present book, the
prerequisites are minimal 3 a good understanding of multivariable calculus should
suïce for studying this book. Exceptions do occur in Chapters 4 and 5, where the
reader is expected to have a good knowledge of the modern theory of integration,
especially in the proofs of uniqueness of solutions. In Chapter 2, we collect a good
number of results from multivariable calculus, ODE and related topics that are used
in the book. Tomake the book as self-contained as possible, we have also provided the
proofs when they are not too lengthy.

" Chapter 3 is about the orst-order equations.Herewe study the general Cauchy problem
(IVP) for such equations. |e (local) theory is fairly complete as the problem is
reduced to an IVP for a system of ODE.|e geometry, however, does get complicated
as we move from linear to quasilinear to general orst-order equations. Because of
their importance in applications, we mention two classes of orst-order equations,
namely the conservations laws and the Hamilton3Jacobi equations. |ese two classes
are studied in detail in further chapters.

" In Chapters 4 and 5, we consider certain important class of orst-order equations 3
Hamilton3Jacobi Equation (HJE) and Conservation Laws (CL) 3 which have been
topics of great interest among researchers owing to their importance in many
applications.|ough these equations have beenmentioned in Chapter 3, the emphasis
here is on a new concept of a solution of these equations. A beginner perhaps
encounters for the orst time the concept of a weak solution to a PDE, which is in
general a non-diferentiable function! Furthermore, to obtain uniqueness of a solution,
additional condition(s) need to be imposed. Since the theory of modern PDE largely
deals with weak solutions, we thought it is a good idea to introduce this concept of
solution to a beginner in the context of HJE and CL. However, these chapters may
be skipped for the orst reading as the uniqueness results require a good knowledge of
modern theory of integration.

" In the context ofODE, the theory dealingwith theCauchy problemof a single equation
or that of a system of orst-order equations is essentially the same. In particular, the

2|is is not to suggest there is a single theory of PDE, like theory ofODE or theory of functions of real or complex

variable. In fact, we see in the literature diferent theories of PDE owing to the sheer vastness of the subject.
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1.3 Description of the Contents 5

analysis is the same for both the orst-order equations and higher-order equations,
in the study of ODE. In contrast, such is not the situation about PDE. |is makes
the subject of PDE more complicated and also interesting. In Chapter 6, we explain
how the data in a Cauchy problem for a second-order equation cannot in general be
arbitrary. |is naturally leads to the concept of classiocation of second- and higher-
order equations. |e main discussion in this chapter is about second-order equations
and their solutions.

It should, however, be noted that some important developments in science
in nineteenth and twentieth centuries, especially quantum mechanics and nuid
dynamics, resulted in new types of PDE 3 the Schrödinger equation, Navier3Stokes
equations and Kortweg-de Vries (K-dV) equation, for example. |ese equations and
many more equations do not fall in the ambit of the above-mentioned classiocation.
|us, there were attempts to make the subject of PDE a unioed subject without
mentioning the class to which a PDE belongs. However, such attempts have not been
that successful. |is is one of the reasons we see a great number of books written on a
particular equation or on a particular class of equations.

" Undoubtedly, the three major equations of mathematical physics 3 the Laplace
equation (Poisson equation), the heat or difusion equation, and the wave equation
3 have had great impact on the development of much of the modern theory of PDE.
|ese equations are the topics of discussion in Chapters 7 through 10, respectively.

" |e Laplace operator is a prototype of uniformly elliptic operators. Some important
properties 3 mean value property, maximum (minimum) principle, Harnack9s
inequalities 3 enjoyed by a solution of the Laplace9s equation are discussed at length
in Chapter 7. We have also indicated that the maximum (minimum) principle is
also enjoyed by a solution of a general uniformly elliptic equation. |e existence and
uniqueness of the solutions are also discussed via Perron9s method and Newtonian
potential.

" In Chapter 8, the heat equation and its solutions are studied in great detail. |is
equation is a prototype of parabolic equations. In a way this equation sits between
the Laplace9s equation and the wave equation. |erefore, its solution enjoys certain
properties from both sides. For example, maximum (minimum) principle from
Laplace9s equation and energy estimate from thewave equation. Its solution also enjoys
a mean value property and backward uniqueness property.

" |e study of Laplace9s equation and the heat equation largely does not depend on the
dimension. However, the analysis of the wave equation does depend on the dimension
and this is the reason to consider the study of the wave equation in one dimension and
higher dimensions separately. |ese are dealt with in Chapters 9 and 10, respectively.
|e wave equation is a prototype of hyperbolic equations.

" |e Cauchy3Kovalevsky theorem is, historically, an important result in the subject
oeld of PDE. It is one of the orst results proving the existence and uniqueness of
solution to a Cauchy problem for a general equation, though in a restricted class of
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6 INTRODUCTION

equations with analytic coeïcients. Nevertheless, the contents of its proof are full of a
priori estimates, a hallmark of the modern theory of PDE. In Chapter 11, we present
the details of this theorem and a generalization.We also brieny discuss the Holmgren9s
uniqueness result.

" We also brieny mention some aspects of the modern theory without going into details
in Chapter 12. An existence result of L2 weak solution is discussed here, to give a
general navor of a modern theory.
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CHAPTER 2

Preliminaries

2.1 MULTIVARIABLE CALCULUS

2.1.1 Introduction

We plan to brieny introduce the calculus on =
n, namely the concept of total derivative of

multivalued function, f = (f1,ï , fm) 6 =
n
³ =

m. We are indeed familiar with the notion

of partial derivatives �ifj =
�fj

�xi
, 1 f i f n, 1 f j f m. In the sequel, we will introduce the

important concept of total derivative and discuss its connection to the partial derivatives.
We remark that the total derivative (known also as Frechét derivative) can be extended to
inonite dimensional normed linear spaces, which is used in the analysis ofmore complicated
problems especially arising from optimal control problems, calculus of variations, partial
diferential equations, and so on.

Motivation: One of the fundamental problems in mathematics (and hence in applications
as well) is the following: Let f 6 =

n
³ =

n. Given y * =
n, solve the system of equations

f(x) = y (2.1)

and represent the solution as x = g(y) and if possible ond good properties of g, namely its
smoothness. More generally, if f 6 =

n+m
³ =

n, x * =
n, y * =

m, solve the implicit system
of equations

f(x, y) = 0 (2.2)

and represent the solution as x = g(y). Consider the one-dimensional case, where
f 6 = ³ = which is C1. Suppose that f 2(a) b 0 for some a. |en, by the continuity of f 2,
we see that f 2(x) b 0 in a neighborhood interval I of a. Hence f 2 preserves the sign in I, f is
monotonic in I and f(I) is an interval. |us, if f(a) = b, then the above argument shows that
f(x) = y is solvable for all y in f(I), a neighborhood of b. |is is the local solvability that is
obtained by the non-vanishing property of the derivative of f at a. |is immediately shows
the importance of understanding the derivatives in the solvability of algebraic equations.
We remark that the mere existence of all partial derivatives does not guarantee the local
solvability. We need the stronger concept of total derivative.
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8 PRELIMINARIES

Linear Systems: Let us look at the well-known linear system

Ax = y, (2.3)

where A = [aij] is a given n × n matrix. |at is f(x) = Ax. |e system (2.3) can be
rewritten as

n3

j=1

aijxj = yi, 1 f i f n. (2.4)

|e system (2.3) or (2.4) is uniquely solvable for x in terms of y if and only if detA b 0
(global solvability). In this case

x = A21y

and A21 is also an n × n matrix. We would like to address the solvability of (2.1) and (2.2)
giving appropriate conditions similar to non-vanishing determinant as in the case of a linear
system.

Example 2.1. Deone f 6 = ³ = by f(x) = x2. Clearly f(0) = 0. For y > 0, the equation
x2 = y has two solutions x1 = +

:
y and x2 = 2

:
y (non-uniqueness) and y < 0, the

equation has no solution. |us, we sense a diïculty around x = 0. Note that
�f

�x

|||x=0 =

2x|x=0 = 0. |is shows that we cannot decide the sign of
�f

�x
around 0. If we take any

a b 0, and b = a2 = f(a), then, for any y * (b 2 �, b + �), � small, there exists unique
x * (a 2 �, a + �) for some � such that f(x) = y. |at is, the equation is solvable in a

neighborhood of the point b = f(a). Here, observe that
�f

�x

|||x=a = 2x|x=a = 2a b 0 and

thus the sign of
�f

�x
(a) is known.

Example 2.2. Consider the function f 6 =×= ³ = deoned by f(x, y) = x2+y221. Indeed,
the solutions (x, y) of the equation f(x, y) = 0 are points on the unit circle. Consider the
solvability of x in terms of y near the solution (0, 1) of x2+y221 = 0, that is x2 = 12y2.

For y near 1, y < 1, we have two solutions x1 = +
:
1 2 y2, x2 = 2

:
1 2 y2. Similarly

the case near the point (0,21). Again observe that
�f

�x
|(0,±1) = 2x|(0,±1) = 0.

On the other hand, consider the point (+1, 0). For y near 0, there exists unique

solution x = +
:
1 2 y2; and for the point (21, 0) and y near 0, there exists unique

solution x = 2
:
1 2 y2. In fact, for any (a, b) with a2 + b2 2 1 = 0 and a b 0, we get

�f

�x

|||(a,b) b 0 and the system is uniquely solvable for x in terms of y in a neighborhood

of b. |e situation is reversed if we look at the possibility of solving y in terms of x.
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2.1 Multivariable Calculus 9

|us, we see the impact of non-vanishing of the derivative on the solvability as in the linear
systems. In higher dimensions, we have many partial derivatives and we need a systematic
procedure to deal with such a complicated case. In other words, wewould like to understand
the solvability of a system of non-linear equations in several unknowns. |is is given via
inverse and implicit function theorems. We also remark that in general, it is only possible
to obtain a local solvability result and not a global result as in linear systems.

2.1.2 Partial, Directional and Frechét Derivatives

Let f 6 = ³ = and x0 * =. |en f 2(x0) is normally deoned as

f 2(x0) = lim
h³0

f(x0 + h) 2 f(x0)

h
, (2.5)

when the limit exists.We are also aware of the fact that f 2(x0) is the slope of the tangent to the
curve y = f(x) at the point (x0, f(x0)). |is allows for another interpretation of the derivative
via linear transformation, which is at the heart of the concept of Frechét derivative. Let U
be an open subset of =n and f 6 U ³ =

m be a vector-valued map represented by f =

(f1,ï , fm)
T, where fi 6 U ³ = are real-valued maps.|e limit deonition can easily be used

to deone the directional derivatives in any direction and in particular partial derivatives are
nothing but the directional derivatives along the co-ordinate axes.

Directional and Partial Derivatives: Recall that the derivative in (2.5) is the instantaneous
rate of change of the output f(x) with respect to the input x. |us, if we consider f(x) at x0 *
=

n, there are inonitely many radial directions emanating from x0. Any given vector � * =
n

determines a direction given by its position vector.|us, for x0 * =
n, f(x0+h�)2f(x0), h * =

is the change in f in the direction �. |is motivates us to deone the derivative of f at x0 * =
n

in the direction �, denoted by D�f(x0), as

D�f(x0) = lim
h³0

f(x0 + h�) 2 f(x0)

h
(2.6)

whenever the limit exists. Note that if f = (f1,ï , fm)
T, then

D�f(x0) = (D�f1(x0),& ,D�fm(x0))
T
.

If � is a unit vector, then D�f(x0) is called the directional derivative of f at x0 in the direction
�. If � = ei = (0,ï , 0, 1, 0,ï , 0) is the co-ordinate axis vector, then clearly

Dei
f(x0) =

�f

�xi
(x0) =

(

�f1
�xi

(x0),ï ,
�fm
�xi

)T

.
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Example 2.3. Deone f 6 =
n
³ = by f(x) = |x|2. |en

�f

�xi
(x0) = 2x0i. Now, for � * =

n,

f(x0 + h�) =

n3
i=1

(x0i + h�i)
2

= f(x0) + 2h(x0, �) + h2|�|2.
It follows that

D�f(x0) = 2(x0, �).

As seen earlier the existence of all directional derivatives implies the existence of partial
derivatives. But, the converse is not true.

Example 2.4. Let f 6 =
2
³ = be deoned by

f(x, y) =

{
x + y if x = 0 or y = 0

1 otherwise.

|en, D(1,0)f(0, 0) = D(0,1)f(0, 0) = 1, but D(a,b)f(0, 0), a b 0, b b 0 does not exist.

Normally, we expect diferentiable functions to be continuous, which is true in one
dimension. But the existence of all directional derivatives at a point does not imply the
continuity at that point. |is is a serious drawback and prompts us to look for a stronger
concept of derivative, namely the notion of total derivative.

Example 2.5. Consider the function f 6 =
2
³ = deoned by

f(x, y) =

{
xy2

x2+y4
, if x b 0

0 if x = 0.

It is easily seen that D�f(0, 0) exists for all � * =
2, but f is not continuous at (0, 0).

Example 2.6. Let the function f 6 =
2
³ = be deoned by

f(x, y) =

§««««

xy(x2 2 y2)

x2 + y2
, if (x, y) b (0, 0)

0 if (x, y) = (0, 0).
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