Contents

Preface
page xiii

1 Background

1.1 **Smart Grids**
1.1.1 Definitions
1.1.2 Benefits
1.1.3 Smart Grid Sensors

1.2 **Basic Concepts in Power Systems**
1.2.1 AC Voltage and Current
1.2.2 Phasor Representation
1.2.3 Impedance and Admittance
1.2.4 Instantaneous Power and Complex Power
1.2.5 Three-Phase Systems
1.2.6 Transformers
1.2.7 Per Unit Normalization
1.2.8 Power Quality
1.2.9 AC to DC Conversion and DC to AC Conversion

1.3 **Different Sectors in a Power Grid**
1.3.1 Transmission and Distribution
1.3.2 Generation
1.3.3 Consumption
1.3.4 Storage

1.4 **Overview of Chapters 2 to 7**

Exercises

2 Voltage and Current Measurements and Their Applications

2.1 **Instrument Transformers**
2.1.1 Turn Ratio
2.1.2 Load Rating and Burden
2.1.3 Three-Phase Systems

2.2 **Non-Contact Voltage and Current Sensors**
2.2.1 Different Working Principles
2.2.2 Power Harvesting

2.3 **Sampling Rate, Reporting Rate, and Accuracy**
Contents

2.3.1 Sampling Rate 42
2.3.2 Reporting Rate 43
2.3.3 Accuracy 44
2.3.4 Impact of Averaging Filters 45

2.4 RMS Voltage and Current Profiles 46
2.4.1 Daily Profiles 47
2.4.2 Histograms and Scatter Plots 49

2.5 RMS Voltage and Current Transient Responses 52
2.5.1 Transient Responses Caused by Faults 52
2.5.2 Transient Responses Caused by Equipment Actuations 53

2.6 RMS Voltage and Current Oscillations 54
2.6.1 Wide-Area Oscillations in Power Transmission Systems 55
2.6.2 Local Transient Oscillations in Power Distribution Systems 56
2.6.3 Modal Analysis of Oscillations 57

2.7 Events in RMS Voltage and Current Measurements 62
2.7.1 Transient Events versus Sustained Events 63
2.7.2 Event Detection Methods 64
2.7.3 Events in Other Types of Measurements 68

2.8 Three-Phase Voltage and Current Measurements 68
2.8.1 Three-Phase RMS Profiles 68
2.8.2 Measuring Phase Unbalance 70
2.8.3 Phase Identification 70

2.9 Measuring Frequency 73
2.9.1 Generation-Load Imbalance 73
2.9.2 Frequency Oscillations 75

Exercises 76

3 Phasor and Synchrophasor Measurements and Their Applications 83
3.1 Measuring Voltage and Current Phasors 83
3.1.1 Phasor Calculation Using Discrete Fourier Transform 83
3.1.2 Time Reference to Measure Phase Angle 84

3.2 Time Synchronization and Synchrophasors 85
3.2.1 Precise Time Synchronization 85
3.2.2 Application of Time Synchronization 87
3.2.3 Different Types of PMU Technologies 87
3.2.4 Synchrophasor Data Concentration 88

3.3 Nominal and Off-Nominal Frequencies 88
3.3.1 Impact of Frequency on Measuring Phase Angle 89
3.3.2 Rate of Change of Frequency 91
3.3.3 Synchronized Frequency Measurements 93

3.4 Relative Phase Angle Difference 94
3.4.1 Approximate Relationship Between RPAD and Power Flow 94
3.4.2 Sustained and Transient Events in RPAD 96
3.4.3 Impact of Inter-Area Oscillations on RPAD 96
Table of Contents

3.5 Phasor Differential and Differential Synchrophasors
 3.5.1 Phasor Differential Calculation
 3.5.2 Impact of Off-Nominal Frequency on PD Calculation
 3.5.3 Differential Synchrophasors
 3.5.4 Application in Event Location Identification

3.6 Three-Phase and Unbalanced Phasor Measurements
 3.6.1 Symmetrical Components
 3.6.2 Unbalanced Events
 3.6.3 Voltage Unbalance Factor
 3.6.4 Phase Identification

3.7 Events in Phasor Measurements
 3.7.1 Analysis of Events in Phase Angle Measurements
 3.7.2 Event Classification

3.8 State and Parameter Estimation
 3.8.1 State Estimation Using PMU Measurements
 3.8.2 Parameter Estimation Using PMU Measurements
 3.8.3 Topology Identification Using PMU Measurements

3.9 Accuracy in Synchrophasor Measurements
 3.9.1 Performance Classes
 3.9.2 Steady-State Performance
 3.9.3 Dynamic Performance
 3.9.4 Accuracy of Three-Phase Synchrophasors
 3.9.5 Accuracy of RPAD and PD

Exercises

4 Waveform and Power Quality Measurements and Their Applications

4.1 Steady-State Waveform Distortion
 4.1.1 Measuring Harmonics
 4.1.2 Measuring Inter-Harmonics
 4.1.3 Measuring Notching

4.2 Event-Triggered Waveform Capture
 4.2.1 Comparing THD
 4.2.2 Comparing RMS
 4.2.3 Point-to-Point Comparison
 4.2.4 Comparing Sub-Cycle RMS
 4.2.5 Differential Waveform
 4.2.6 Neutral Current Waveform
 4.2.7 Other Factors and Methods

4.3 Analysis of Events and Faults in Waveform Measurements
 4.3.1 Faults in Underground Cables
 4.3.2 Faults in Overhead Lines
 4.3.3 Faults in Transformers
 4.3.4 Faults in Capacitor Banks
 4.3.5 Faults in Other Devices and Equipment
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.6</td>
<td>Impact of Faults on DERs</td>
<td>162</td>
</tr>
<tr>
<td>4.4</td>
<td>Features and Statistical Analysis of Waveform Events</td>
<td>164</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Angle, Magnitude, and Duration</td>
<td>165</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Number of Affected Phases</td>
<td>167</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Transient Oscillations</td>
<td>168</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Transient Impulses</td>
<td>169</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Fault-Specific Features</td>
<td>169</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Changes in Steady-State Characteristics</td>
<td>171</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Time, Season, and Location</td>
<td>172</td>
</tr>
<tr>
<td>4.4.8</td>
<td>Other Features</td>
<td>172</td>
</tr>
<tr>
<td>4.5</td>
<td>Harmonic Synchronphasors</td>
<td>173</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Harmonic State Estimation</td>
<td>174</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Topology Identification</td>
<td>177</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Differential Harmonic Synchronphasors</td>
<td>179</td>
</tr>
<tr>
<td>4.6</td>
<td>Synchronized Waveform Measurements</td>
<td>180</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Relative Waveform Difference</td>
<td>180</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Modal Analysis of Synchronized Transient Waveforms</td>
<td>183</td>
</tr>
<tr>
<td>4.7</td>
<td>Accuracy in Waveform Measurements</td>
<td>184</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Impact of Noise and Interference</td>
<td>184</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Relative Mean Squared Error</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>186</td>
</tr>
<tr>
<td>5</td>
<td>Power and Energy Measurements and Their Applications</td>
<td>191</td>
</tr>
<tr>
<td>5.1</td>
<td>Measuring Power</td>
<td>191</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Active Power</td>
<td>193</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Power Profile</td>
<td>195</td>
</tr>
<tr>
<td>5.2</td>
<td>Measuring Reactive Power and Power Factor</td>
<td>197</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Reactive Power and Power Factor Profiles</td>
<td>197</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Apparent Power</td>
<td>198</td>
</tr>
<tr>
<td>5.2.3</td>
<td>True Power Factor</td>
<td>199</td>
</tr>
<tr>
<td>5.3</td>
<td>Measuring Energy</td>
<td>200</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Fixed Intervals</td>
<td>201</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Fixed Increments</td>
<td>201</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Net Energy Metering and Feed-In Energy Metering</td>
<td>202</td>
</tr>
<tr>
<td>5.4</td>
<td>Smart Meters and Their Applications</td>
<td>203</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Price-Based Demand Response</td>
<td>203</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Incentive-Based Demand Response</td>
<td>207</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Energy Usage Clustering</td>
<td>209</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Other Applications of Smart Meter Measurements</td>
<td>212</td>
</tr>
<tr>
<td>5.5</td>
<td>Advanced Metering Infrastructure</td>
<td>214</td>
</tr>
<tr>
<td>5.5.1</td>
<td>AMI Communications Networks</td>
<td>214</td>
</tr>
<tr>
<td>5.5.2</td>
<td>AMI Data Management Systems</td>
<td>215</td>
</tr>
<tr>
<td>5.6</td>
<td>Disaggregation and Sub-Metering</td>
<td>215</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Load Disaggregation</td>
<td>215</td>
</tr>
</tbody>
</table>
5.6.2 Net Load Disaggregation
5.6.3 Sub-Metering
5.7 Load Modeling
5.7.1 Static Load Model
5.7.2 Dynamic Load Model
5.8 State Estimation Using Power Measurements
5.8.1 Basic Nonlinear Formulation
5.8.2 Linearized Approximate Formulation
5.8.3 Convex Relaxation and Other Formulations
5.9 Three-Phase Power and Energy Measurements
5.9.1 Two-Wattmeter Method
5.9.2 Phase Identification
5.9.3 Other Applications of Three-Phase Power and Energy Measurements
5.9.4 Three-Phase Apparent Power and Power Factor
5.10 Accuracy in Power and Energy Measurements
5.10.1 Accuracy Classes
5.10.2 Meter Accuracy versus System Accuracy
5.10.3 Other Factors that Affect Accuracy
Exercises

6 Probing and Its Applications
6.1 State and Parameter Estimation Using Probing
6.1.1 Enhanced Observability
6.1.2 Enhanced Redundancy
6.2 Topology and Phase Identification Using Probing
6.2.1 Topology Identification
6.2.2 Phase Identification
6.3 Model-Free Control Using Probing
6.4 Modal Analysis with Probing
6.4.1 Probing with Resistive Brake
6.4.2 Probing with Intermittent Wave Modulation
6.4.3 Input–Output System Identification
6.5 Power Line Communications as a Probing Tool
6.5.1 Basics of Power Line Communications
6.5.2 Signal Attenuation and Channel Estimation
6.5.3 Signal Reflection at Impedance Discontinuities
6.5.4 Applications to Power System Monitoring
6.6 Fault Location Identification Using PLC
6.7 Topology and Phase Identification Using PLC
6.7.1 Topology Identification Using PLC
6.7.2 Phase Identification Using PLC
Exercises
Contents

7 Other Sensors and Off-Domain Measurements and Their Applications

7.1 Device and Asset Sensors
 - 7.1.1 Transformers
 - 7.1.2 Capacitor Banks
 - 7.1.3 Line Conductors
 - 7.1.4 Wind Turbines
 - 7.1.5 Solar Panels
 - 7.1.6 Batteries

7.2 Building Sensors
 - 7.2.1 Occupancy
 - 7.2.2 Temperature and Illuminance
 - 7.2.3 Electric Vehicles

7.3 Financial Data
 - 7.3.1 Pricing and Billing
 - 7.3.2 Electricity Market

7.4 Images, LIDARs, Drones, and Robots
 - 7.4.1 Images
 - 7.4.2 LIDARs
 - 7.4.3 Drones and Robots

7.5 Other Off-Domain Measurements

Exercises

References

Index