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CHAPTER 1

Quantum Field Theory Basics

Introduction

This chapter is devoted to basic aspects of quantum field theory, ranging from the foundations to
perturbation theory and renormalization, and is limited to the canonical formalism (functional
methods are treated in Chapter 2) and to the traditional workflow (Lagrangian → Feynman rules
→ time-ordered products of fields → scattering amplitudes) for the calculation of scattering
amplitudes (the spinor-helicity formalism and on-shell recursion are considered in Chapter
4). The problems of this chapter deal with questions in scalar field theory and quantum
electrodynamics, while non-Abelian gauge theories are discussed in Chapter 3.

Non-interacting Field Theory

A non-interacting field theory may be defined by a quadratic Lagrangian. In the simplest case
of a scalar field theory, it reads

L ≡
∫

d3x
{

1
2

(

∂μφ
)(

∂μφ) − 1
2m

2φ2
}
. (1.1)

Such a Lagrangian defines a dynamical system with infinitely many degrees of freedom, corre-
sponding to the values taken by φ(x) at every point x of space. The momentum canonically
conjugate to φ(x) is given by

Π(x) ≡
∂L

∂(∂0φ(x))
= ∂0φ(x), (1.2)

which leads to the Hamiltonian

H ≡
∫

d3x Π(x)∂0φ(x) − L =

∫

d3x
{

1
2Π

2 + 1
2

(

∇φ
)2

+ 1
2m

2φ2
}
. (1.3)
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2 1 QUANTUM FIELD THEORY BASICS

From the Hamiltonian or Lagrangian, one obtains the equation of motion of the field, which in
the present example reads

(

�x +m2
)

φ(x) = 0, (1.4)

known as the Klein–Gordon equation. Generic real solutions of this linear equation are
superpositions of plane waves:

φ(x) =

∫
d3k

(2π)32Ek

{
α∗
k e

−ik·x + αk e
ik·x

}
, (1.5)

where Ek ≡
√

p2 +m2 is the dispersion relation associated with the wave equation (1.4),
and αk is a function of momentum that depends on the boundary conditions imposed on the
solution.

Canonical quantization consists in promoting the coefficients αk, α
∗
k into annihilation and

creation operators ak, a
†
k that obey the following commutation relations:

[

ap, a
†
q

]

≡ (2π)32Ep δ(p− q). (1.6)

The normalization in Eqs. (1.5) and (1.6) is chosen so that
[

H, a
†
p

]

= Epa
†
p and

[

H, ap

]

=

−Epap, which means that a
†
p increases the energy of the system by Ep while ap decreases it

by the same amount. As a consequence, this setup describes a collection of non-interacting
particles. The commutation relation (1.6) implies the following equal-time commutation
relation between the field operator and its conjugate momentum:

[

φ(x), Π(y)
]

=
x0=y0

i δ(x− y), (1.7)

which one may view as the quantum version of the classical Poisson bracket between a
coordinate and its conjugate momentum.

Interacting Field Theory and Interaction Representation

Interactions are introduced via terms of degree higher than two in the Lagrangian:

L ≡
∫

d3x
{

1
2

(

∂μφ
)(

∂μφ) − 1
2m

2φ2

︸ ︷︷ ︸
L0, non-interacting theory

−V(φ)
︸ ︷︷ ︸

interactions

}
. (1.8)

(In order to have a causal theory, the potential V(φ) must be a local function of the field φ(x);
see Problem 4.) In the presence of interactions, the Klein–Gordon equation of motion becomes

(

�x +m2
)

φ(x) + V ′(φ(x)) = 0. (1.9)

Since the degree of V(φ) is higher than two, this equation is non-linear, which induces a mixing
between the Fourier modes of the field and prevents writing its solutions as superpositions of
plane waves.

By assuming that the interactions are turned off at large times, x0 → ±∞, we may
define free fields φin and φout that coincide with the interacting field φ of the Heisenberg
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INTRODUCTION 3

representation, respectively when x0 → −∞ and x0 → +∞. For instance, φ and φin are
related by

φ(x) = U(−∞, x0)φin(x)U(x0,−∞),

U(t2, t1) ≡ T exp

(

−i

∫ t2

t1

dx0d3x V(φin(x))

)

. (1.10)

In this representation, the time dependence of the field φ(x) is split into a trivial one that comes
from the free field φin and the time evolution operator U that depends on the interactions.
Since they are free fields obeying Eq. (1.4), φin and φout can be written as superpositions of

plane waves, with coefficients ap,in, a
†
p,in and ap,out, a

†
p,out, respectively. These two sets of

creation and annihilation operators define two towers of Fock states, i.e., states with a definite
particle content at x0 = −∞ and x0 = +∞, respectively.

Lehmann–Symanzik–Zimmermann Reduction Formulas

Experimentally measurable quantities, such as cross-sections, may be related to correlation
functions of the field operator as follows. An intermediate step involves the transition ampli-
tudes between in and out states,

〈

q1 · · ·qnout

∣

∣p1 · · ·pmin

〉

≡ (2π)4δ
(

∑

i

pi −
∑

j

qj

)

T(q1···n|p1···m), (1.11)

in terms of which a cross-section in the center of momentum frame is given by

σ12→1···n

∣

∣

∣ center of
momentum

=
1

4
√
s |p1|

∫

dΓn(p1,2)
∣

∣

∣
T(q1,··· ,n|p1,2)

∣

∣

∣

2
, (1.12)

with dΓn(p1,2) ≡
∏

j

d3qj

(2π)32Eqj

(2π)4δ
(

p1 + p2 −
∑

j

qj

)

, s ≡ (p1 + p2)
2.

In turn, the transition amplitudes from in to out states are expressed in terms of expectation
values of time-ordered products of field operators by the Lehmann–Symanzik–Zimmermann
(LSZ) reduction formulas:

〈

q1 · · ·qn out

∣

∣p1 · · ·pm in

〉

=
im+n

Z
m+n
2

∫ m∏

i=1

d4xj e
−ipi·xi (�xi +m2)

×
∫ n∏

j=1

d4yj e
iqj·yj (�yj

+m2)
〈

0out

∣

∣Tφ(x1) · · ·φ(xm)φ(y1) · · ·φ(yn)
∣

∣0in

〉

, (1.13)

where Z is the wavefunction renormalization factor.

Generating Functional, Feynman Propagator

The calculation of expectation values of time-ordered products of field operators is usually
organized by encapsulating them in a generating functional

〈

0out

∣

∣Tφ(x1) · · ·φ(xn)
∣

∣0in

〉

=
δnZ[j]

iδj(x1) · · · iδj(xn)

∣

∣

∣

∣

j≡0

, (1.14)
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4 1 QUANTUM FIELD THEORY BASICS

with Z[j] ≡
〈

0out

∣

∣T exp i

∫

d4x j(x)φ(x)
∣

∣0in

〉

(1.15)

= exp

(

− i

∫

d4x V

(

δ

iδj(x)

)

)

〈

0in

∣

∣T exp i

∫

d4x j(x)φin(x)
∣

∣0in

〉

︸ ︷︷ ︸
Z0[j], non-interacting theory

.

(1.16)

The last factor, the generating functional of the non-interacting theory, is a Gaussian in the
auxiliary source j:

Z0[j] = exp

(

−
1

2

∫

d4xd4y j(x)j(y)G0
F
(x, y)

)

, (1.17)

where G0
F
(x, y) is the free Feynman propagator, which can be expressed in various equivalent

ways:

G0
F
(x, y) =

〈

0in

∣

∣Tφin(x)φin(y)
∣

∣0in

〉

(1.18)

=

∫
d3p

(2π)32Ep

(

θ(x0 − y0) e−ip·(x−y) + θ(y0 − x0) e+ip·(x−y)
)

, (1.19)

G0
F
(p) =

i

p2 −m2 + i0+
. (1.20)

Feynman Rules of Scalar Field Theory

The effect of interactions can be calculated order-by-order by expanding the first exponential in
Eq. (1.16). The successive terms of this expansion are obtained from a diagrammatic expansion,
where each diagram is converted into a formula by means of Feynman rules. Below we list
these rules in momentum space, for a scalar field theory:

1. Draw all the graphs with as many external lines as field operators in the correlation
function, and a number of vertices equal to the desired order. The vertices allowed in
these graphs must have valences equal to the degrees of the terms in V(φ). Graphs with
multiple connected components need not be considered in the calculation of scattering
amplitudes.

2. A 4-momentum k is assigned to each internal line of the graph, and the associated
Feynman rule is a free propagator G0

F
(k):

p

=
i

p2 −m2 + i0+
.

No propagator should be assigned to the external lines of a graph when calculating a
scattering amplitude (because of the factors �+m2 in the reduction formulas).

3. For an interaction λ
n!φ

n, each vertex of valence n brings a factor −iλ(2π)4δ
(∑

i ki
)

,
where the ki are the momenta incoming into this vertex:

= −iλ.
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INTRODUCTION 5

3. All the internal momenta that are not constrained by the delta functions at the vertices
should be integrated over with a measure d4k/(2π)4. In a connected graph with n

I

internal lines and n
V

vertices, there are n
L
= n

I
− n

V
+ 1 of them, which is also the

number of loops in the graph.

4. Each graph must be weighted by a symmetry factor, defined as the inverse of the
order of the discrete symmetry group of the graph (assuming interaction terms properly
symmetrized, as in V(φ) = φn/n!).

Dimensional Regularization

The momentum integrals that correspond to loops in Feynman diagrams may be divergent at
large momentum. Convergence may be assessed from the superficial degree of divergence
of a graph, ω(G) ≡ 4n

L
− 2n

I
for a graph with n

L
loops and n

I
internal lines in a scalar

field theory with quartic coupling in four spacetime dimensions: the graph G is convergent
if ω(G) < 0 and the superficial degree of divergence of all its subgraphs is negative as well.
In order to safely manipulate possibly divergent loop integrals, the first step is to introduce a
regularization, i.e., a modification of the Feynman rules such that all loop integrals become
well defined. Many regularization methods are possible: Pauli–Villars subtraction, lattice
discretization, momentum cutoff, dimensional regularization.

Dimensional regularization, based on the observation that loop integrals calculated in an
arbitrary number D of dimensions have an analytical continuation which is well defined at all
D’s except a discrete set of values, is particularly adapted to analytical calculations. With this
regularization scheme, some common (Euclidean) loop integrals are given by

∫
dDk

E

(2π)D
1

(k2
E
+ Δ)n

=
Δ

D
2 −n

(4π)
D
2

Γ
(

n− D
2

)

Γ
(

n
) ,

∫
dDk

E

(2π)D
kμ

E
kν

E

(k2
E
+ Δ)n

=
gμν

2

Δ
D
2 +1−n

(4π)
D
2

Γ
(

n− 1− D
2

)

Γ
(

n
) ,

∫
dDk

E

(2π)D
kμ

E
kν

E
kρ

E
kσ

E

(k2
E
+ Δ)n

=
gμνgρσ + gμρgνσ + gμσgνρ

4

Δ
D
2 +2−n

(4π)
D
2

Γ
(

n− 2− D
2

)

Γ
(

n
) ,

∫
dDk

E

(2π)D
kμ1

E
· · · kμ2n+1

E

(k2
E
+ Δ)n

= 0. (1.21)

The first of these equations is obtained by integration in D-dimensional spherical coordinates,
and the subsequent equations follow from Lorentz invariance.

Renormalization

The list of correlation functions that exhibit ultraviolet divergences can be obtained from
the superficial degree of divergence ω(G) (except in situations where a symmetry produces
cancellations that cannot be anticipated by power counting). For a scalar field theory with a
quartic coupling, one has ω(G) = 4 − n

E
+ (D − 4)n

L
in D spacetime dimensions, where
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6 1 QUANTUM FIELD THEORY BASICS

n
E

is the number of external points and n
L

the number of loops. The Weinberg convergence
theorem states that a graph is ultraviolet convergent if and only if the superficial degree of
divergence of the graph, and of any of its subgraphs, is negative.

In D = 4 spacetime dimensions, ω(G) is negative for all correlation functions with
n

E
> 4 points, implying that only a finite number of correlation functions have intrinsic

divergences. Moreover, these divergent correlation functions are the expectation values of the
operators already present in the Lagrangian, (∂μφ)

2, φ2, φ4. The divergences that appear in
these functions can be subtracted order-by-order via a redefinition of their coefficients in the
Lagrangian, i.e., Z (this one is usually not explicit in the bare Lagrangian because it is set to
1), m2 and λ, respectively. Such a quantum field theory is called renormalizable.

In D > 4 dimensions, ω(G) increases with the number of loops at fixed n
E
. This

implies that any correlation function exhibits intrinsic ultraviolet divergences beyond a certain
loop order. Removing these divergences would require that one adds arbitrarily many new
terms in the Lagrangian, reducing considerably the predictive power of such a theory (but
it may nevertheless be of some use in an effective sense, at low loop orders). It is called
non-renormalizable.

When D < 4, the superficial degree of divergence of any correlation function eventually
becomes negative after a certain loop order. These theories have a finite number of ultraviolet
divergent Feynman graphs, whose calculation is sufficient to determined the renormalized
Lagrangian once and for all. These theories are called super-renormalizable.

For general interactions in arbitrary dimensions, the above criteria can be expressed in
terms of the mass dimension of the prefactor that accompanies the operator in the Lagrangian.
The corresponding operator is renormalizable if the mass dimension of its coupling constant is
zero, non-renormalizable if this dimension is negative, super-renormalizable if it is positive.

Renormalization Group

In a renormalized quantum field theory, one may still freely choose the renormalization scale
μ at which the conditions that define the parameters of the renormalized Lagrangian (masses,
couplings, etc.) are imposed. Physical results should not depend on this scale. The dependence
of various renormalized quantities with respect to μ is controlled by the Callan–Symanzik
equations, also known as renormalization group equations. For the renormalized n-point
correlation function Gn, this equation reads

(

μ∂μ + β∂λ + γmm∂m
︸ ︷︷ ︸

≡ Dµ

+nγ
)

Gn = 0, (1.22)

with γ ≡
1

2

∂ ln(Z)

∂ ln(μ)
, β ≡

∂ λ

∂ ln(μ)
, γm ≡

∂ ln(m)

∂ ln(μ)
(1.23)

(γ is called an anomalous dimension, and β is the β function). Physical quantities are invariant
under the action of Dμ, i.e., under the simultaneous change of the scale μ and of the parameters
Z, λ,m as prescribed by the above differential equations (the solutions λ(μ) and m(μ) are
called the running coupling and running mass, respectively). The curves (Z(μ), λ(μ),m(μ))
in the parameter space of the renormalized theory, along which physical quantities are invariant,
define a vector field called the renormalization flow.

From the Callan–Symanzik equation satisfied by the propagator, (Dμ + 2γ)G2 = 0, one

obtains the corresponding flow equations for the pole mass m
P

(defined from the value of p2
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INTRODUCTION 7

at the pole of the propagator) and for the residue Z at the pole:

DμmP
= 0, (Dμ + 2γ)Z = 0. (1.24)

Thus, a n-point scattering amplitude An ∼ Z−n/2Gn also satisfies DμAn = 0. Amputated
correlation functions Γn ≡ (G2)

−nGn obey (Dμ − nγ)Γn = 0.

Spin-1/2 Fields

The representation of the Lorentz algebra of lowest even dimension is defined by the generators
Mμν

1/2
≡ i

4

[

γμ, γν
]

, where the γμ are the Dirac 4× 4 matrices, which obey
{
γμ, γν

}
= 2 gμν.

Under a Lorentz transformation Λ ≡ exp
(

− i
2ωμνM

μν
)

, a Dirac spinor is a four-component
field that transforms as

ψ(x) → exp
(

− i
2ωμνM

μν
1/2

)

ψ(Λ−1x). (1.25)

In the absence of interactions, such a field obeys the – Lorentz invariant – Dirac equation,

(

iγμ∂μ −m
)

ψ = 0, (1.26)

which can be obtained as the equation of motion that results from the following Lagrangian:

L = ψ
(

iγμ∂μ −m
)

ψ, with ψ ≡ ψ†γ0. (1.27)

The canonical quantization of a free spinor (i.e., a solution of the Dirac equation (1.26))
consists in replacing its Fourier coefficients by creation and annihilation operators:

ψ(x) ≡
∑

s=±

∫
d3p

(2π)32Ep

{
d†
spvs(p)e

+ip·x + bspus(p)e
−ip·x

}
. (1.28)

Since ψ is not Hermitian, the two operators in this decomposition need not be mutual conjugates
(except in the special case of Majorana fermions). The spinors us, vs are a basis of free spinors
in momentum space defined by

(

γμpμ −m
)

us(p) = 0,
(

γμpμ +m
)

vs(p) = 0, (1.29)

u†
r(p)us(p) = 2Epδrs, v†r(p)vs(p) = 2Epδrs. (1.30)

For the Hamiltonian of this system to have a well-defined ground state, these creation and
annihilation operators must obey anti-commutation relations. The non-zero ones read

{dsp, d
†
s ′p ′} = {bsp, b

†
s ′p ′} = (2π)32Epδss ′δ(p− p ′), (1.31)

or, equivalently,

{ψα(x), ψ
†
β(y)} =

x0=y0
δαβδ(x− y). (1.32)
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8 1 QUANTUM FIELD THEORY BASICS

The Dirac Lagrangian has a U(1) symmetry, ψ → e−iαψ, which by Noether’s theorem leads

to a conserved current Jμ ≡ ψγμψ and conserved charge

Q ≡
∫

d3x J0 =
∑

s=±

∫
d3p

(2π)32Ep

(

b†
spbsp − d†

spdsp

)

. (1.33)

Spin-1 Fields

A vector field Aμ(x) is a four-component field that transforms as Aμ(x) → Λμ
νA

ν(Λ−1x)
under a Lorentz transformation Λ. The simplest such (massless) field is the electromagnetic
field, whose Lagrangian reads

L = − 1
4 FμνF

μν, with Fμν ≡ ∂μAν − ∂νAμ. (1.34)

The corresponding equation of motion, ∂μF
μν = 0, has several remarkable properties:

• Gauge invariance: for any function θ, Aμ − ∂μθ is a solution if Aμ is a solution.

• The field A0 is not dynamical, but given by a constraint from the spatial components Ai.

• Only the transverse (i.e., transverse to the momentum ki in Fourier space) components
of Ai are constrained by the equation of motion.

The unphysical redundancy due to gauge invariance is removed by imposing a gauge condition
– e.g., ∂μA

μ=0 (Lorenz gauge), ∂iA
i=0 (Coulomb gauge), A0=0 (temporal gauge) – leaving

only two independent dynamical solutions per Fourier mode. The quantization of the vector
field Aμ amounts to replacing the coefficients in its Fourier decomposition by creation and
annihilation operators:

Aμ(x) ≡
∑

λ=1,2

∫
d3p

(2π)32|p|

{
a
†
λpǫ

μ∗
λ (p) eip·x + aλpǫ

μ
λ(p) e

−ip·x
}
, (1.35)

with the canonical commutation relation
[

aλp, a
†
λ ′p ′

]

= (2π)32|p|δλλ ′δ(p− p ′) and where

the objects ǫ
μ
λ(p) are polarization vectors that encode the Lorentz indices of a vector field of

polarization λ and momentum p. The polarization vectors may depend on the choice of gauge
condition, but always satisfy pμǫ

μ
λ(p) = 0.

Quantum Electrodynamics

The conserved charge of the Dirac fermions can be interpreted as an electrical charge. In-
teractions between these fermions and photons are introduced by minimal coupling, i.e., by
requesting that the modified Dirac Lagrangian is invariant under spacetime-dependent U(1)

transformations, ψ(x) → e−ieθ(x)ψ(x). This is achieved by replacing the ordinary derivative
by a covariant derivative, Dμ ≡ ∂μ − ieAμ. Perturbation theory in QED has the following
Feynman rules:

p

=
i(/p+m)

p2 −m2 + i0+

p

µ ν =
i Cμν(p)

p2 + i0+

µ

= −i e γμ
fermion

loop
= (minus sign)
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The numerator Cμν in the photon propagator depends on the gauge fixing (for instance,
Cμν = −gμν in Feynman gauge).

Ward–Takahashi Identity

A crucial property of QED amplitudes with external photons is the Ward–Takahashi identity,
namely

pμ Γ
μ···(p, . . . ) = 0, (1.36)

where Γμ···(p, . . . ) is an amplitude amputated of its external propagators, containing a photon
of momentum p with Lorentz index μ. The dots represent the other external lines, either
photons or charged particles. The conditions of validity of this identity, which follows from
the conservation of the electrical current, are the following:

• All the external lines corresponding to charged particles must be on-shell, and contracted
in the appropriate spinors if they are fermions.

• The gauge fixing condition must be linear in the gauge potential, in order not to have
three- and four-photon vertices.

The Ward–Takahashi identity plays a crucial role in ensuring that QED scattering amplitudes
are gauge invariant, and that they fulfill the requirements of unitarity despite the presence of
non-physical photon polarization in certain gauges.

Unitarity, the Optical Theorem and Cutkosky’s Cutting Rules

The time evolution operator from x0 = −∞ to x0 = +∞ (also called the S-matrix) is unitary,
SS† = 1. Writing it as S ≡ 1+ iT to separate the interactions, this implies the optical theorem:

Im
〈

αin

∣

∣T
∣

∣αin

〉

=
1

2

∑

states β

∣

∣

〈

αin

∣

∣T
∣

∣βin

〉
∣

∣

2
.

This relation implies that the total probability of scattering from the state α to any state β (with
at least one interaction) equals twice the imaginary part of the forward scattering amplitude
α → α. In perturbation theory, the imaginary part of a transition amplitude Γ can be obtained
by means of Cutkosky’s cutting rules:

Im Γ =
1

2

∑

cuts γ

[

Γ
]

γ
,

where a cut is a fictitious line that divides the graph into two subgraphs, with at least one
external leg on each side of the cut. A cut graph

[

Γ
]

γ
is calculated with the following rules:

• Left of the cut: use the propagator G0
++(p) =

i
p2−m2+i0+

and the vertex −iλ,

• Right of the cut: use the propagator G0
−−(p) =

−i
p2−m2−i0+

and the vertex +iλ,

• The propagators traversing the cut should be G0
+−(p) = 2π θ(−p0)δ(p2).
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10 1 QUANTUM FIELD THEORY BASICS

About the Problems of this Chapter

• Problem 1 establishes a crucial relationship between the field operators φ (Heisenberg
representation) and φin (interaction representation), namely that the former obeys the
interacting equation of motion if the latter obeys the free Klein–Gordon equation.

• In Problem 2, we derive an explicit form of the elements of the little group for massless
particles. This is then used in Problem 9 in order to show that, in a theory with massless
spin-1 bosons, the Lorentz invariance of scattering amplitudes implies a property that
may be viewed as a weak form of the Ward–Takahashi identity. This observation, due to
Weinberg, is extended to gravity in Problem 10.

• Problem 3 establishes some formal relationships between various expressions for the
time evolution operator and the S-matrix. Then, Problem 4 shows that the expression
for the S-matrix as the time-ordered exponential of a local interaction term is to a large
extent a consequence of causality.

• In Problem 5, we derive a set of conditions, known as the Landau equations, for a given
loop integral to have infrared or collinear singularities. An explicit multi-loop integration
is studied in Problem 6, which provides another point of view on these conditions.

• Problem 7 establishes Weinberg’s convergence theorem in the simple case of scalar
field theory, a crucial result in the discussion of renormalization since it clarifies the
role of the superficial degree of divergence in assessing whether a particular diagram is
ultraviolet divergent.

• The electron anomalous magnetic moment is calculated at one loop in Problem 8. This
is a classic QED calculation of great historical importance, which has now been pushed
to five loops and provides one of the most precise agreements between theory and
experiment in all of physics.

• Problem 11 derives the Lee–Nauenberg theorem, an important result about soft and
collinear singularities which states that such divergences are removed by summing
transition probabilities over degenerate states, thereby providing a link between the
finiteness of a quantity and its practical measurability.

• In Problem 12, we discuss the external classical field approximation, thanks to which a
heavy charged object may be replaced by its classical Coulomb field.

• Problems 13 and 14 are devoted to a derivation of the Low–Burnett–Kroll theorem,
a result that states that the emission probability of a soft photon is proportional to the
probability of the underlying hard process, at the first two orders in the energy of the
emitted photon.

• Coherent states are introduced in Problem 15 and their main properties established.
They will be discussed further in Problems 20, 21 and 22.

• Problems 16 and 17 study the running coupling in a scalar field theory with two fields,
and in a QCD-like theory at two-loop order.
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