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Introduction

In this monograph, we introduce the reader to the connection between topo-

logical dynamical systems and dimension groups. Let us first explain briefly

each of these terms.

A topological dynamical system is a pair (X, T ) of a compact metric space

X and a continuous map T from X to itself. The system is minimal if the orbit

of every point of X is dense. We will be mainly interested in minimal systems.

We will often consider the case where X is a closed subset of the set of AZ of

infinite sequences over a finite alphabet A, and T is the shift on AZ. When X

is, moreover, invariant by T , we obtain a topological dynamical system called

a shift space.

A dimension group is an ordered abelian group having some additional spe-

cific properties. To every minimal shift space (and more generally to every

minimal Cantor system), we will associate a dimension group in such a way

that isomorphic systems have isomorphic dimension groups.

One of the main objects of this book is to describe various methods to

compute these dimension groups. In this way, we will be able to distinguish

topological dynamical systems, which can appear in many different forms, by

comparing their dimension groups, which are easier to handle.

As a motivating example, consider the Fibonacci sequence, which is the

sequence

x = abaababa · · ·

obtained by iterating indefinitely the substitution a �→ ab, b �→ a starting with

a. The sequence of iterates

a

ab

aba

abaab

· · ·
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2 Introduction

converges (in an obvious sense) to x . The shift space X formed of the

sequences y ∈ {a, b}Z with all its blocks appearing in x is a shift space called

the Fibonacci shift. We will see that its dimension group is the discrete sub-

group of R formed of the x + yα with x, y ∈ Z and where α = (1 +
√

5)/2

is the golden mean. We shall see how this is related to the fact that there is a

unique invariant probability measure on X that is such that the probability of

the set of sequences y = (yn)n∈Z such that y0 = a is α − 1.

Dimension groups were first associated with a family of associative algebras

called approximately finite, or AF-algebras. These algebras are themselves a

class of C∗-algebras that are direct limits of finite dimensional algebras and

were introduced by Ola Bratteli (1972). The algebra is built from a special

kind of graph called a Bratteli diagram.

Dimension groups were introduced by George Elliott (1976) as a tool for

classifying AF-algebras and he proved that the dimension group (together

with an additional information called the scale) provides a complete algebraic

invariant for these algebras.

The connection of these ideas with dynamical systems was first done by

Wolfgang Krieger (1977) (see also Krieger (1980a)) who defined a dimension

group for every shift of finite type. The link with Bratteli diagrams was done by

Anatol Vershik (1982) who used a lexicographic order on paths of the Bratteli

diagrams to define a topological dynamical system on the set of infinite paths

of the graph. Later, Richard Herman, Ian Putnam and Christian Skau showed

that every minimal system on a Cantor space is isomorphic to such system. As

a consequence, a dimension group is attached to any minimal Cantor system

and subsequent work by Thierry Giordano, Ian Putnam and Christian Skau

(1995) showed that this group is related to the orbit structure of the system.

In this expository presentation, written after the unpublished notes by Ber-

nard Host (1995) (see also Host (2000)), we present the basic elements of

this theory, insisting on the computational and algorithmic aspects allowing

one to effectively compute the dimension groups. The computation applies

in particular to the case of substitution shifts, explicitly presented previously

in Durand et al. (1999), in relation with Forrest (1997).

In the first chapter (Chapter 1) we present the basic notions of topological

dynamical systems. Although such systems can be defined using a group or

semigroup action, we restrict our attention to systems on which acts the group

Z or the semigroup N. We define recurrent systems and minimal dynamical

systems (Section 1.1). Next, we introduce in Section 1.2 shift spaces, which are

the basic systems we are interested in. We define return words and higher block

shifts. In Section 1.4, we introduce substitution shifts. We define the notion of

recognizable morphism and we prove the Theorem of Mossé (Theorem 1.4.35)

asserting that any aperiodic primitive morphism is recognizable.

www.cambridge.org/9781108838689
www.cambridge.org


Cambridge University Press
978-1-108-83868-9 — Dimension Groups and Dynamical Systems
Fabien Durand , Dominique Perrin 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 3

In the second chapter (Chapter 2), we shift to an algebraic and combinatorial

environment. We first introduce, in Section 2.1, ordered groups (considering

only abelian groups). We define several notions, as that of order unit and order

ideal. We also define a simple ordered group as one with no nontrivial ideals.

In Section 2.3 we define direct limits of ordered groups and we give examples

of the computation of these ordered groups. In the last part of this section

(Section 2.4), we finally define dimension groups. These groups are defined

as direct limits of groups Z
n with the usual ordering. We prove the abstract

characterization by Effros, Handelman and Shen Effros et al. (1980) using the

property of Riesz interpolation.

In Chapter 3, we come to notions of cohomology defined in a Cantor

system. We first introduce the notion of coboundary (Section 3.1) and prove in

Section 3.2 the Gottshalk–Hedlund Theorem (Proposition 3.2.5) characteriz-

ing the continuous functions on a Cantor set that are coboundaries. We next

define the ordered cohomology group K 0(X, T ) of a recurrent system (X, T )

as the quotient of the group of integer valued continuous functions on X by

the subgroup formed by coboundaries. In the next two sections (Sections 3.6

and 3.7), we consider the effect on the ordered cohomology group of apply-

ing a factor map or taking the system induced on a clopen set. In the second

part of this chapter, beginning with Section 3.8, we define invariant probabil-

ity measures on a Cantor system and recall that a substitutive shift defined by

a primitive substitution has a unique invariant probability measure. We indi-

cate a method to compute this measure. We show in Section 3.9 that there is

a close connection between the cohomology group and the cone of invariant

measures (Proposition 3.9.3). We use this connection to give a description of

the dimension groups of Sturmian shifts (Theorem 3.9.3).

In Chapter 4, we introduce the fundamental tool of partitions in towers, or

Kakutani–Rokhlin partitions. We prove the theorem of Herman, Putnam and

Skau, which shows that any minimal Cantor system can be represented as the

limit of a sequence of partitions in towers (Theorem 4.1.6). In Chapter 4 we

come back to partition in towers. We first show how to associate an ordered

group to a partition in towers (Section 4.2). Next, in Section 4.3, we use a

sequence of partitions in towers to prove that the group K 0(X, T ) is, for any

minimal dynamical system (X, T ), a simple dimension group (Theorem 4.3.4).

In the next sections, we present explicit methods to compute the dimension

group of a minimal shift space. In Section 4.4, we use return words and in

Section 4.5, we use Rauzy graphs. Finally, in Section 4.6, we show how to

compute the dimension group of a substitutive shift, as exposed in Durand

et al. (1999).

We introduce Bratteli diagrams in Chapter 5. We define the telescoping of

a diagram. We define the dimension group of a Bratteli diagram and prove
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that it is a complete invariant for telescoping equivalence (Theorem 5.1.5). We

next introduce ordered Bratteli diagrams and show that one may associate a

dynamical system to every properly ordered Bratteli diagram. We prove the

Bratteli–Vershik Model Theorem (Theorem 5.3.3) showing the completeness

of the model for minimal Cantor systems. We next prove the Strong Orbit

Equivalence Theorem (Theorem 5.5.1) showing that dimension groups are a

complete invariant for strong orbit equivalence. We state (without proof) the

related Orbit Equivalence Theorem (Theorem 5.5.3).

In Chapter 6, we focus on substitution shifts and their representations. We

begin by considering odometers, which have BV-representations close to sub-

stitution shifts. We characterize, as a main result, the family of BV-systems

associated with stationary Bratteli diagrams as the disjoint union of stationary

odometers and substitution minimal systems (Theorem 6.2.1). We develop next

the description of linearly recurrent shifts, which are characterized by their BV-

representation (Theorem 6.3.5). We introduce in Section 6.4 the notion of an

S-adic representation. The main result is an explicit description of the dimen-

sion group of a unimodular S-adic shift (Theorem 6.5.4). In the last section

(Section 6.6), we consider the family of substitutive shifts, a natural generali-

zation of substitution shifts. The main result is a characterization by a finiteness

condition of substitutive sequences (Theorem 6.6.1).

Chapter 7 describes the class of dendric shifts, defined by a restrictive con-

dition on the possible extensions of a word. This class is a simultaneous

generalizations of several other classes of interest, such as Sturmian shifts

or interval exchange shifts (introduced in the next chapter). The main result

is the Return Theorem (Theorem 7.1.15), which states that the set of return

words in a minimal dendric shift is a basis of the free GP on the alphabet.

We use this result to describe the S-adic representation of dendric shifts and

show that it can be defined using elementary automorphisms of the free group

(Theorem 7.1.40). We illustrate these results by considering the class of Stur-

mian shifts (Section 7.2). The last part of the chapter is devoted to specular

shifts, a class of eventually dendric shifts that plays a role in the next chapter,

when we introduce linear involutions. The main result is a description of the

dimension group of a specular shift (Theorem 7.3.40).

In Chapter 8, we introduce the notion of interval exchange transformation.

We prove Keane’s Theorem characterizing minimal interval exchanges (The-

orem 8.1.2). We develop the notion of Rauzy induction and characterize the

subintervals reached by iterating the transformation (Theorem 8.1.25). We gen-

eralize Rauzy induction to a two-sided version and characterize the intervals

reached by this more general transformation (Theorem 8.2.2). We link these

transformations with automorphisms of the free group (Theorem 8.2.14). We
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also relate these results with the theorem of Boshernizan and Carroll giving

a finiteness condition on the systems induced by an interval exchange when

the lengths of the intervals belong to a quadratic field (Theorem 8.3.2). In

the last section (Section 8.4) we define linear involutions and show that the

natural coding of a linear involution without connections is a specular shift

(Theorem 8.4.9).

In the last chapter (Chapter 9) we give a brief introduction to the link

between Bratteli diagrams and the vast subject of C∗-algebras. We define

approximately finite algebras and show their relation to Bratteli diagrams. We

relate simple Bratteli diagrams and simple AF algebras (Theorem 9.3.12). We

prove Elliott’s Theorem showing that AF algebras are characterized by their

dimension groups (Theorem 9.3.21).

A point useful to mention is that each chapter ends with exercises that can be

either illustrations of the results or proofs of some results stated in the chapter,

or additional results. For each of them, a solution is provided. The style of

writing for the solutions is often more concise than for a proof in the main text

but is in general a full proof.

After the exercises, a section of notes concludes each chapter, giving the

bibliographic references and also pointing to further results.

The book ends with a series of appendices. The first one (Appendix A) gives

the solutions of the exercises proposed in the previous chapters.

A second appendix (Appendix B) is a guide to be used as a reference for

notions from several domains of mathematics used in this book. There are also

three appendices of a special kind. The first one (Appendix C) is a summary

of the various systems (or classes of systems) discussed in the chapters. Next,

Appendix D lists the many equivalent definitions of Sturmian shifts (we hope

to be thanked by the readers for this). Finally, Appendix E gives a list of open

problems in this field.

The book is written in such a way that it should be readable by a gradu-

ate student in mathematics or computer science. As a general rule (with a few

exceptions, and notably in Chapter 9), complete proofs are given. Some chap-

ters can be read independently of the others, although most of them rely on the

introductory chapter (Chapter 1). It seems impossible to cover all chapters in

one course, but a selection can be made, resulting in a significant content. One

of the authors has recently taught with success the content of Chapters 1, 2

and 3.
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