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Stochastic Holomorphy

Here, we cover basic results in stochastic holomorphy that form the foundation

of our work in later chapters of this book. The main focus lies on the space

of p-integrable holomorphic random variables, Hp(Ω), and on SL∞(Ω), con-

sisting of complex Brownian martingales with uniformly bounded quadratic

variation process.

Sections 1.2 and 1.3 contain estimates for the martingale maximal function,

the quadratic variation process, and the Marcinkiewicz decomposition for

holomorphic random variables in H1(Ω). We investigate the stochastic Hilbert

transform H , the Doob projection N, and the martingale embedding operator

M in considerable detail in Sections 1.4–1.6. The relation

Id = NM

forms the basis for most applications of stochastic holomorphy to complex

analysis. It is exploited in Section 1.7 and throughout the course of this book.

Finally, in Section 1.8 we prove that Doob’s projection preserves square

function estimates and that

N : SL∞(Ω)→ SL∞(T)

forms a bounded linear surjection, inverting the action of the martingale

embedding operator M : SL∞(T)→ SL∞(Ω).

1.1 Preliminaries

Our preliminary section forms a listing of standard concepts in real, complex,

and stochastic analysis, all of which are accessible by means of graduate-level

textbooks. The following topics are reviewed in the subsections below:

1

www.cambridge.org/9781108838672
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83867-2 — Hardy Martingales
Paul F. X. Müller 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Stochastic Holomorphy

(i) Conditional expectation, discrete time martingales, almost sure conver-

gence, uniform integrability and convergence in L1, Doob’s inequalities,

Davis decomposition.

(ii) Complex Brownian motion, Brownian martingales, stochastic integrals,

Itô’s formula in complex format.

(iii) Harmonic and subharmonic functions in the unit disk, the boundary

convergence theorems of Fatou and Littlewood, the Poisson kernel and

Kakutani’s theorem, Green’s function, and the occupation time formula

for Brownian motion.

(iv) Convolution operators, the de La Valle Poussin kernels, the Fejer kernels,

Hardy spaces in the unit disk, the Riesz factorisation, the F. and M. Riesz

theorem, the Hilbert transform, the predual of H1(T), and polydisk

algebras.

(v) Weak topology, reflexive Banach spaces, uniform integrability, weak

compactness in L1, and the Dunford–Pettis theorem.

1.1.1 Conditional Expectation and Martingales

In this section, we fix notation and recall basic concepts of measure and

integration such as conditional expectation, filtered measure spaces, martingale

sequences, uniform integrability, Doob’s convergence theorems, and maximal

inequalities. Basic references include the books by Kahane (1985) and Neveu

(1975).

Measure distance: Let (F,F , µ) be a finite measure space. We denote the

linear space of F -measurable scalar-valued functions by L0
= L0(F,F , µ).

We put

N = N(F,F , µ) =
{

f ∈ L0 : µ({ f , 0}) = 0
}

.

Given f , g ∈ L0, we define the measure distance by

dµ( f , g) = inf{ǫ > 0: µ({ω ∈ F : | f (ω) − g(ω)| > ǫ}) < ǫ}.

We have dµ( f , g) = 0 if and only if f − g ∈ N . The quotient space

L0(F,F , µ) = L0/N ,

equipped with the distance induced by dµ, becomes a complete metric space.

When convenient (and feasible) we suppress the explicit dependence on the

measure space (F,F , µ) and compress our notation to L0
= L0(F,F , µ).
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1.1 Preliminaries 3

Continuous operators on L0: Suppose we are given a second measure space

(S,Σ, λ), defining L0(S,Σ, λ) of equivalence classes of Σ-measurable functions

f : S→ R. Consider now a linear operator,

T : L0(F,F , µ)→ L0(S,Σ, λ).

The continuity of T , with respect to the metrics dµ and dλ, is equivalent to the

following condition: For any ǫ > 0 there exists δ > 0 such that

µ({ω ∈ F : | f (ω)| > δ}) < δ implies λ({s ∈ S : |(T f )(s)| > ǫ}) < ǫ,

for any f ∈ L0(F,F , µ).

Lebesgue spaces: For 1 ≤ p < ∞, we let Lp(F,F , µ) denote the space of

F -measurable, p-integrable, scalar-valued functions equipped with the semi-

norm

‖ f ‖p =
(∫

F

| f |pdµ

)1/p

.

For 1 ≤ p < ∞, the quotient space

Lp(F,F , µ) = Lp(F,F , µ)/N ,

equipped with its canonical quotient norm, forms a Banach space called the

Lebesgue space of p-integrable functions. Similarly, we form the Banach space

L∞(F,F , µ) = L∞(F,F , µ)/N ,

where L∞(F,F , µ) denotes the space of F -measurable functions that are µ-

essentially bounded. The space L∞(F,F , µ) is equipped with the seminorm,

given by the essential supremum,

‖ f ‖∞ = µ − ess supω∈F | f (ω)| = inf{t > 0: µ{| f | > t} = 0}.

We frequently shorten the notation of Lp(F,F , µ) to Lp(F) and further to Lp,

when the context allows us to do so.

Conditional Expectation

We fix a finite measure space (F,F , µ) and a sub-sigma-algebra G of F . For

f ∈ L1(F,F , µ), we consider the set function

λ(A) =

∫

A

f dµ, A ∈ G.

In view of Lebesgue’s theorem on dominated convergence, λ : G → R is a

finite signed measure on the measurable space (F,G). Moreover, by the abso-

lute continuity of the Lebesgue integral, for any sequence An ∈ G satisfying
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4 Stochastic Holomorphy

limn→∞ µ(An) = 0, we obtain limn→∞ λ(An) = 0. The Radon–Nikodym

theorem asserts that there exists a G-measurable function g : F → R such that

λ(A) =

∫

A

gdµ, A ∈ G, and

∫

F

|g|dµ ≤
∫

F

| f |dµ.

Moreover, up to G-measurable sets of vanishing µ-measure, g is uniquely

determined. We say that g is the conditional expectation of f with respect to G
and write

E( f |G) = g.

Clearly, taking the conditional expectation defines a linear operation, and f ≥ 0

implies E( f |G) ≥ 0.Moreover, E(1F |G) = 1F and

‖E( f |G)‖p ≤ ‖ f ‖p,

for f ∈ Lp(F), 1 ≤ p ≤ ∞. We frequently use the following properties:

(i) If f , h ∈ L1(F) and h is G-measurable, then E(h f |G) = hE( f |G).

(ii) If G1 is a sub-sigma-algebra of G, then E(E( f |G)|G1) = E( f |G1) for f ∈
L1(F).

Let (Gk)∞
k=0

be a sequence of sub-sigma-algebras of F satisfying Gk−1 ⊆ Gk ⊆
F for k ∈ N, and G0 = {∅, F}. Let G denote the sigma-algebra generated by
⋃Gk, and let µG be the restriction of µ to G. We then say that (F, (Gk), µG)

forms a filtered finite measure space.

The following far-reaching theorem addresses convergence of the condi-

tional expectations E( f |Gk). As it turns out, for f ∈ L1, we have convergence

in the L1-norm and point-wise convergence almost everywhere.

Theorem 1.1.1 For f ∈ L1(F), set g = E( f |G) and fk = E( f |Gk). Then

lim
k→∞

∫

F

|g − fk |dµ = 0,

and there exists E ⊂ F satisfying µ(E) = 0 such that g(ω) = limk→∞ fk(ω), for

ω ∈ F\E.

Examples

The canonical product filtration on the infinite torus product forms a concrete

realization of a filtered probability space. We explicitly describe the dyadic

filtration embedded in the infinite torus product.
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1.1 Preliminaries 5

Example 1.1.1 (The product filtration on TN) Let T =
{

eiθ : θ ∈ [0, 2π[
}

be

equipped with the Lebesgue sigma-algebra and normalized angular measure,

denoted dm. Thus m is the Haar measure on T, i.e., the unique rotation invariant

probability measure on the sigma-algebra of Lebesgue measurable subsets

of T. We denote by

T
N
=

{

(zi)
∞
i=1 : zi ∈ T

}

its countable product equipped with the product sigma-algebra and normalized

product Haar measure, denoted P. We denote by Fk the sigma-algebra on TN

generated by the cylinder sets
{(

A1, . . . , Ak,T
N
)}

,

where Ai, i ≤ k, are measurable subsets of T. A measurable function F defined

on TN is measurable with respect to Fk if it depends only on the first k

variables of TN. The conditional expectation with respect to the sigma-algebra

Fk acts as integration with respect to the variable zi, where i ≥ k+1. Explicitly,

if f ∈ L1(TN), then for almost every x ∈ Tk we have

E( f |Fk)(x) =

∫

TN

f (x, z)dP(z). (1.1.1)

The filtered probability space
(

T
N, (Fk),P

)

is our preferred framework for

discussing discrete-time martingales.

Example 1.1.2 (The dyadic filtration on TN) We define the independent

Rademacher functions σk : TN → {−1, 1}, by

σk(z) = sign(cosk(z)),

where z = (zk) and cosk(z) = ℜzk. Set Dk to be the finite algebra of subsets in

T
N generated by σ1, . . . , σk. Let D be the sigma-algebra generated by

⋃Dk.

Denoting PD to be the restriction of P to D, we obtain the filtered probability

space
(

T
N, (Dk), PD

)

.

For 1 ≤ p ≤ ∞, the space Lp
(

T
N,D,PD

)

is closed in Lp
(

T
N,F ,P). The

conditional expectation operator

E (· | D) : Lp(
T
N,F ,P)→ Lp(

T
N,D,PD

)

is a surjective, idempotent contraction for 1 ≤ p ≤ ∞.

Example 1.1.3 (The dyadic filtration in [0, 1[) We say that I ⊆ [0, 1[ is a

dyadic interval if there exists n ∈ N∪{0} and 1 ≤ i ≤ 2n such that I = [(i−1)/2n,

i/2n[.We let I denote the collection of all dyadic intervals contained in the unit
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6 Stochastic Holomorphy

interval [0, 1[. For I ∈ I there exist uniquely determined I1, I2 ∈ I such that

I1 ∩ I2 = ∅ and I1 ∪ I2 = I. In that case |I1| = |I2| = |I|/2. If inf I1 = inf I we

say that I1 is the left half of I, and

hI = 1I1
− 1I2
, (1.1.2)

is called the L∞-normalized Haar function, supported on I. Let Ik = {I ∈ I :

|I| = 2−k} and let Gk = σ{Ik} denote the sigma-algebra generated by Ik. For

f ∈ L1[0, 1[, we have

E( f |Gk) =
∑

I∈Ik

∫

I

f
dt

|I| 1I , (1.1.3)

and

E( f |Gk+1) − E( f |Gk) =
∑

I∈Ik

∫

I

f hI

dt

|I| hI . (1.1.4)

With ([0, 1[,L, λ) denoting Lebesgue’s measure space, a filtered probability

space is formed by ([0, 1[, (Gk), λ).

Dyadic intervalsI are canonically ordered as follows. If I, J ∈ I and |I| ≤ |J|
then I ≺ J; if |I| = |J| and inf I < inf J then I ≺ J. The canonical order on I is

often called the lexicographic order for obvious reasons.

Martingale Convergence

We fix again a finite measure space (F,F , µ), and let (Gk) be a sequence of

increasing sub-sigma-algebras of F , satisfying G0 = {∅, F}. We say that a

sequence of µ-integrable functions ( fk) is a (Gk)-martingale if

fk = E( fk+1|Gk), k ∈ N. (1.1.5)

We write ∆ fk = fk − fk−1 and say that (∆ fk) is the martingale difference

sequence of ( fk). Should there exist f ∈ L1(F) such that E( f |Gk) = fk, we say

that the martingale ( fk) is closed by f .

The following theorems, due to Doob, assert that the martingale condition

(1.1.5) imposes considerable constraints on the size and oscillations of an

L1-bounded sequence ( fk). In view of Theorem 1.1.1, a closed martingale

converges in the norm of L1(F), and hence forms a uniformly integrable subset

of L1(F).We recall that { fk : k ∈ N} is (defined to be) uniformly integrable in

L1(F), if

lim
t→∞

sup
k∈N

∫

{| fk |>t}
| fk |dµ = 0.

The following theorem provides the converse implication, and thus sheds light

on the relation between general martingales and closed ones.

Theorem 1.1.2 (Doob’s martingale convergence theorem) For any (Gk)-

martingale sequence ( fk), the following conditions are equivalent:
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1.1 Preliminaries 7

(i) There exists f ∈ L1(F) such that fk = E( f |Gk) for k ∈ N.
(ii) The set { fk : k ∈ N} is uniformly integrable in L1(F).

(iii) There exists f ∈ L1(F) such that limk→∞ ‖ f − fk‖1.

We next address the question of almost sure convergence in the context of

general submartingales. A sequence of µ-integrable functions ( fk) is a (Gk)

submartingale if fk is Gk-measurable and

fk ≤ E( fk+1|Gk), k ∈ N.

Theorem 1.1.3 For any L1(F)-bounded submartingale ( fk), there exists

E ⊂ F with µ(E) = 0 such that

f (ω) = lim
k→∞

fk(ω),

exists for ω ∈ F\E. If { fk} is a uniformly integrable subset of L1(F), then

lim
k→∞
‖ f − fk‖1.

Summarizing Theorems 1.1.2 and 1.1.3, every L1-bounded martingale

converges almost surely; however its convergence in the L1-norm requires

uniform integrability. By contrast, for p > 1, every Lp-bounded martingale

is norm-convergent in Lp. This assertion is a direct consequence of Doob’s

maximal inequalities stated in Theorem 1.1.4.

Theorem 1.1.4 Let ( fk) be an L1(F)-bounded (Gk)-martingale. Then

tµ

{

max
k≤n
| fk | > t

}

≤
∫

F

| fn|dµ, (1.1.6)

where t > 0, n ∈ N. If p > 1 and ( fk) is an Lp(F)-bounded (Gk)-martingale

then
∫

F

max
k≤n
| fk |pdµ ≤

(

p

p − 1

)p ∫

F

| fn|pdµ, (1.1.7)

for n ∈ N. Inequalities (1.1.6) and (1.1.7) hold true if ( fn) is a nonnegative

submartingale.

In Burkholder’s classical Lp-inequality, maximal functions are replaced by

martingale square functions.

Theorem 1.1.5 (Burkholder’s theorem) For 1 < p < ∞, there exist cp > 0

and Cp < ∞ such that for any Lp(F)-bounded (Gk)-martingale ( fk) then

c
p
p

∫

F

| fn|pdµ ≤
∫

F















| f0|2 +
n

∑

k=1

| fk − fk−1|2














p/2

dµ ≤ C
p
p

∫

F

| fn|pdµ, (1.1.8)

where f0 = E( fn|G0) and n ∈ N.
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8 Stochastic Holomorphy

As p→ 1, the constants in Theorem 1.1.5 satisfy cp → 0 and Cp → ∞. The

limiting case, p = 1, in Doob’s maximal inequality (1.1.7) and Burkholder’s

square function inequality (1.1.8) is captured by the following result from

Davis (1970).

Theorem 1.1.6 (Davis’s theorem) For any L1(F)-bounded (Gk)-martingale

( fk),

c1

∫

F

max
k≤n
| fk |dµ ≤

∫

F

S( fn)dµ ≤ C1

∫

F

max
k≤n
| fk |dµ,

where f0 = E( fn|G0), n ∈ N, and

S( fn) =















| f0|2 +
n

∑

k=1

| fk − fk−1|2














1/2

, (1.1.9)

the constants c1 > 0 and C1 < ∞ are independent of the martingale and the

underlying filtration.

The basic tool invented by Davis (1970) in the proof of Theorem 1.1.6 is

referred to as the Davis decomposition of martingales.

Theorem 1.1.7 For any (Gk)-martingale ( fk), there exist (Gk)-martingale

sequences (gk) and (bk) satisfying

fn = gn + bn, n ∈ N, (1.1.10)

|∆gn| ≤ 8 max
k≤n−1

| fk |, n ∈ N, (1.1.11)

and
n

∑

k=1

‖∆bk‖L1(µ) ≤ 8‖max
k≤n
| fk‖L1(µ), n ∈ N, (1.1.12)

where ∆bk = bk − bk−1 and ∆gk = gk − gk−1.

For the specific constants in Theorem 1.1.7, we refer to Garsia (1973,

Theorem III 3.5).

Martingale Spaces

Given a filtered measure space (F, (Gk), µ), we define the martingale Hardy

space H1(F, (Gk), µ) to consist of those (Gk)-martingales f = ( fk) for which
∥

∥

∥( fk)
∥

∥

∥

H1(F,(Gk),µ)
=

∥

∥

∥S( f )
∥

∥

∥

L1(F,µ)
< ∞,

where

S( f ) =















| f0|2 +
∞
∑

k=1

| fk − fk−1|2














1/2

.
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1.1 Preliminaries 9

The conditional square function of a (Gk)-martingale f = ( fk) is defined by

Scd( f ) =
(

| f0|2 +
∑

Ek−1| fk − fk−1|2
)1/2
.

It gives rise to the space of predictable martingales P(F, (Gk), µ), which

consists of those (Gk)-martingales f = ( fk) for which

∥

∥

∥( fk)
∥

∥

∥P(F,(Gk),µ)
=

∥

∥

∥Scd( f )
∥

∥

∥

L1(F,µ)
< ∞. (1.1.13)

In Section 2.5 we will prove the Burkholder–Gundy inequality, which asserts

that
∥

∥

∥( fk)
∥

∥

∥

H1(F,(Gk),µ)
≤ 2

∥

∥

∥( fk)
∥

∥

∥P(F,(Gk),µ)
. (1.1.14)

Martingales in the Hardy space H1(F, (Gk), µ) and in P(F, (Gk), µ) converge

almost surely and in L1; they may thus be identified with their almost sure

limits.

Theorem 1.1.8 Each martingale ( fk) ∈ H1(F, (Gk), µ) is closed. That is, there

exists f ∈ L1(F, µ), such that

lim
k→∞

∥

∥

∥ fk − f
∥

∥

∥

L1 = 0,

and fk = E( f | Gk), for k ∈ N. The same conclusion holds true for martingales

( fk) ∈ P(F, (Gk), µ).

Proof By Davis’s theorem (Theorem 1.1.6), each martingale ( fk) ∈
H1(F, (Gk), µ) is a uniformly integrable subset of L1(F, µ). Hence Doob’s

martingale convergence theorem (Theorem 1.1.2) shows that the sequence ( fk)

converges in L1(F, µ), and that there exists f ∈ L1(F, µ), measurable with

respect to G = σ(⋃Gk

)

, such that fk = E( f |Gk), for k ∈ N.
By Inequality (1.1.14) any martingale in P(F, (Gk), µ) is contained in

H1(F, (Gk), µ). Hence, the conclusion of the theorem holds forP(F, (Gk), µ). �

Operators of Weak Type (1:1)

The space L1,∞
= L1,∞(F,F , µ) consists of those F -measurable f : F → C for

which

‖ f ‖1,∞ = sup
t>0

tµ{| f | > t} < ∞.

We say that a sublinear operator T : L1(F,F , µ) → L1,∞(F,F , µ) is of weak

type (1:1) if there exists C < ∞ such that

‖T ( f )‖1,∞ ≤ C‖ f ‖1, f ∈ L1. (1.1.15)
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10 Stochastic Holomorphy

We repeatedly use that a sublinear operator T is of weak type (1:1) if and only

if for any f ∈ L1(F,F , µ) and ϕ ∈ L∞(F,F , µ) with ‖ϕ‖∞ ≤ 1, we have

∫

F

|T ( f )|1/2|ϕ|dµ ≤ C1

(∫

F

| f |dµ ·
∫

F

|ϕ|dµ
)1/2

, (1.1.16)

for some C1 < ∞.We refer to Wojtaszczyk’s book (1991, Lemma III.I.11) for

the equivalence between Inequalities (1.1.15) and (1.1.16).

1.1.2 Brownian Martingales

We review basic results on Brownian martingales, stopping times, martingale

convergence theorems, stochastic integrals, complex Brownian motion, and

Itô’s formula and some of its numerous consequences. These concepts are

covered, for example, in the books by Revuz and Yor (1991), Bass (1995),

and Durrett (1984).

Brownian Motion

Let (Ω,F ,P) be a fixed probability space. Let R+
0
= {t ∈ R : t ≥ 0}. A map

X : Ω × R+
0
→ R defines uniquely maps

Xt : Ω→ R, ω→ X(ω, t),

for t ≥ 0. We say that X = (Xt : 0 ≤ t < ∞) forms a real-valued stochastic

process if each of the maps Xt is F − B measurable where B denotes the

Borel sigma-algebra on R. Similarly we define complex-valued processes, and

processes indexed by N0.

A real stochastic process (xt : 0 ≤ t < ∞) on a probability space (Ω,F ,P) is

called one-dimensional Brownian motion (or simply Brownian motion) if

(i) x0(ω) = 0 for almost every ω ∈ Ω.

(ii) For t ∈ R+
0

and h > 0, the increment xt+h− xt is independent of the process

up to time t, (xs : 0 < s ≤ t), and Gaussian distributed with mean 0 and

variance h; that is, for every measurable A ⊆ R,

P({xt+h − xt ∈ A}) =
∫

A

e−x2/2h dx√
2πh
.

(iii) The function t → xt(ω) is continuous, for almost every ω ∈ Ω.

We letFt denote the completion, with respect to (Ω,F ,P), of the sigma-algebra

generated by (xs : 0 < s ≤ t). We have (see for instance Bass [1995, p. 17–18])

that

Ft =

⋂

ǫ>0

Ft+ǫ , (1.1.17)
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