Contents

Pr No	eface otation ar	nd Acronyms	xiii xvii
I	FOUN	IDATIONS	1
1	Intr	oduction	3
	1.1	A Very Brief History of Time	3
	1.2	Dynamical Cores	4
	1.3	Gravity	5
	1.4	Fluid Composition of Earth's Atmosphere and Oceans	6
	1.5	Organisation of Chapters	12
2	Governing Equations for Motion of a Dry Atmosphere: Vector		
	For	m	14
	2.1	Preamble	14
	2.2	Fluid Dynamics	15
	2.3	Thermodynamics of an Ideal Gas	29
	2.4	The Governing Equations for Motion of an Ideal Gas	36
	2.5	Concluding Remarks	37
3	Governing Equations for Motion of a Cloudy Atmosphere:		
	Vec	tor Form	38
	3.1	Preamble	38
	3.2	Representation of Water and Other Substances in the Atmosphere	39
	3.3	The Equation of State for Cloudy Air	49
	3.4	The Momentum Equation for Cloudy Air	52
	3.5	The Thermodynamic-Energy Equation for Cloudy Air	53
	3.6	Alternative Forms for the Thermodynamic-Energy Equation	56
	3.7	The Governing Equations for Motion of a Cloudy Atmosphere	62
	3.8	Concluding Remarks	63
	App	endix: Derivation of the Equation of State for Cloudy Air from First	
		Principles	65

viii			Contents
	4	Governing Equations for Motion of Geophysical Fluids: Vector	
		Form	68
		4.1 Preamble	68
		4.2 More General Thermodynamics	69
		4.3 Functional Forms for a Cloudy-Air Parcel	86
		4.4 The Governing Equations for Motion of a Geophysical Fluid	92
		4.5 Concluding Remarks	93
		Appendix: Specific Heat Capacities for an Ideal Gas	94
	5	Orthogonal-Curvilinear Coordinate Systems	97
		5.1 Preamble	97
		5.2 Deep Orthogonal-Curvilinear Coordinates	98
		5.3 Shallow Orthogonal-Curvilinear Coordinates	111
		5.4 Concluding Remarks	118
	6	Governing Equations for Motion of Geophysical Fluids:	
		Curvilinear Form	119
		6.1 Preamble	119
		6.2 The Governing Equations in Vector Form	120
		6.3 Axial-Orthogonal-Curvilinear Coordinates	121
		6.4 Coriolis Terms	122
		6.5 The Governing Equations in Axial-Orthogonal-Curvilinear Coordinates	126
		6.6 The Governing Equations in Spherical-Polar and Cylindrical-Polar	
		Coordinates	128
		6.7 Euler–Lagrange Forms of the Momentum Components	128
		6.8 Concluding Remarks	129
		Appendix A: The Governing Equations in Spherical-Polar Coordinates	130
		Appendix B: The Governing Equations in Cylindrical-Polar Coordinates	131
	7	Representation of Gravity: Basic Theory and Spherical Planets	133
		7.1 Preamble	133
		7.2 A Guide to This Chapter and to the Next One	141
		7.3 Equilibrium States for Unaccelerated Flow	143
		7.4 The Geopotential at and near Earth's Surface	147
		7.5 Newtonian Gravity and Potential Theory	149
		7.6 A Spherical Planet of Constant Density	150
		7.7 Avenues for Investigation	156
		7.8 A Spherical Planet of Variable Density	156
		7.9 Concluding Remarks	171
		Appendix: Some Spherical Relations	172
	8	Representation of Gravity: Further Theory and Spheroidal	
		Planets	174
		8.1 Preamble	174
		8.2 Functional Forms for Spheroidal Planets	176
		8.3 An Ellipsoidal Planet of Constant Density	182
		8.4 Reformulation of the Procedure to Determine Newtonian Gravity	
		Outside a Planet	189
		8.5 An Ellipsoidal Planet of Variable Density	191
		8.6 Spherical Geopotential Approximation as an Asymptotic Limit	211
		8.7 Concluding Remarks	214

Cont	tents		
9	Thermodynamic Potentials and Thermodynamical Consistency		
	9.1 Preamble	216	
	9.2 Thermodynamic Potentials	218	
	9.3 Basic Gibbs Thermodynamic Potentials	223	
	9.4 Composite Gibbs Potentials	228	
	9.5 Concluding Remarks	237	
10	Moist Thermodynamics		
	10.1 Preamble	238	
	10.2 Humid Air	239	
	10.3 Latent Internal Energy and Phase Transitions	243	
	10.4 Water Substance in a vacuum	24/	
	10.6 The Triple Point of Water in the Presence of Dry Air	239	
	10.7 Definition of Some Thermodynamic Quantities	273	
	10.8 Concluding Remarks	200	
		272	
11	Ocean Thermodynamics	294	
	11.1 Preamble	294	
	11.2 Oceanic Gibbs Potentials	296	
	11.6 An Alternative Prototypical Cibbs Potential for an Ocean	299	
	11.5 The TEOS-10 Cibbs Potential	312	
	11.6 Concluding Remarks	327	
12	Geopotential Coordinates for Modelling Planetary Atmospheres and Oceans		
	12.1 Preamble	328	
	12.2 Geodesy and the World Geodetic System	330	
	12.3 The Classical Spherical Geopotential Approximation Revisited	338	
	12.4 Geopotential Approximation for Ellipsoidal Planets	340	
	12.5 Further Geopotential Approximation above Earth's Geold	345	
	12.7 Interfude	349	
	12.8 Orthogonal Trajectories to the Geonotential Surfaces	353	
	12.9 GREAT Coordinates	357	
	12.10 Concluding Remarks	366	
	Appendix: The Equilibrium Depth of an Ocean Covering a Planet	369	
13	Vertical Coordinates and Boundary Conditions	371	
	13.1 Preamble	371	
	13.2 The Deep-Fluid Equations and Boundary Conditions	373	
	13.3 Mass Conservation	388	
	13.4 Energetics	389	
	13.5 Axial-Angular-Momentum Conservation	393	
	13.6 Boundary Conditions in the Vertical and Global Conservation	395	
	13.7 Conservation with the Shallow Approximation	403	
	13.8 An Energy-Like Invariant for Elastic Lids at Finite Pressure	403	
	13.9 An Atmospheric State with Zero Pressure at Finite Height	405	
	13.10 Concluding Remarks	410	
	Appendix: Some Useful Identities	411	

ix

X			Contents
	14	Variational Methods and Hamilton's Principle of Stationary	
		Action	413
		14.1 Preamble	413
		14.2 Eulerian versus Lagrangian Viewpoints for Fluid Dynamics	414
		14.3 Mass Conservation	417
		14.4 Functionals and Variational Principles	419
		14.5 Hamilton's Principle of Stationary Action	427
		14.6 Gravitational Attraction between Two Particles Revisited	431
		14.7 A System of Point Particles	435
		14.8 Governing Equations for Global Fluids: Vector Form	439
		14.9 Governing Equations for Global Fluids: Curvilinear Form	449
		14.10 Euler–Lagrange Equations for Global Fluids	452
		14.11 Concluding Remarks	456
		Appendix: Variations in Axial-Orthogonal-Curvilinear Coordinates	456
	15	Conservation	463
		15.1 Preamble	463
		15.2 Governing Equations	464
		15.3 Conservation Principles: Vector Form	465
		15.4 Conservation Principles: Curvilinear Form	480
		15.5 Noether's Theorem, Symmetries, and Conservation	487
		15.6 Concluding Remarks	494
	П	DYNAMICALLY CONSISTENT EQUATION SETS	495
	16	Deep and Shallow, Dynamically Consistent Equation Sets in 3D	497
		16.1 Preamble	497
		16.2 A Unified Quartet of Dynamically Consistent Equation Sets	500
		16.3 Derivation Methodologies for Approximate Equation Sets	511
		16.4 Classical Eulerian Derivation	511
		16.5 Lagrangian Derivation Using Hamilton's Principle	512
		16.6 Lagrangian Derivation Using Euler-Lagrange Equations	516
		16.7 Equation Transition from Deep Fluids to Shallow Fluids	517
		16.8 Concluding Remarks	520
		Appendix A: Four Equation Sets in Spherical-Polar Coordinates	522
		Appendix B: Four Equation Sets in Axial-Orthogonal-Curvilinear Coordinates	526
	17	Quasi-Shallow, Dynamically Consistent Equation Sets in 3D	531
		17.1 Preamble	531
		17.2 Classical Eulerian Derivation	533
		17.3 Lagrangian Derivation	543
		17.4 A Unified Sextet of Equation Sets in Spheroidal Geometry	549
		17.5 A Unified Sextet of Equation Sets in Spherical Geometry	553
		17.6 Concluding Remarks	557
		Appendix A: Quasi-Shallow Equation Sets in Axial-Orthogonal-Curvilinear	
		Coordinates Appendix B: Variations for Quasi-Shallow Contributions	557 559
	18	Snallow-water Equation Sets in 2D	562
		18.1 Preamble	562
		18.2 Eulerian Derivation of the Basic Shallow-Water Equations	566

Con	tents		
	18.3 Horizontal Coordinate Systems and Models of Gravity	575	
	18.5 Quasi Shallow Enhancement of Lagrangian Density	504	
	18.6 Fuler-Lagrange Derivation of the Quasi-Shallow Enhanced Set	591	
	18.7 (Ouasi-Shallow/Shallow-Water Conservation Principles	595	
	18.8 The 'Ouasi-Shallow' Shallow-Water Equations in Spherical Geometry	602	
	18.9 Derivation of a Unified Quartet of Equation Sets	605	
	18.10 The Unified Quartet in Spherical Geometry	614	
	18.11 Concluding Remarks	618	
	Appendix A: Derivation of 2D Quasi-Shallow Lagrangian Density by Vertically Averaging the 3D One	621	
	Appendix B: Conservation Principles for the 'Quasi-Shallow' Shallow-Water Equations	624	
10	A Devetue vie Determinist (DD)/) Equation for Elever		
19	A Barotropic Potential Vorticity (BPV) Equation for Flow over a Spheroidal Planet		
	19.1 Preamble	631	
	19.2 The Momentum and Mass-Continuity Equations in Curvilinear Form	632	
	19.3 Inviscid, Horizontal, Shallow Flow in Spheroidal Geometry	634	
	19.4 Global Conservation	639	
	19.5 The BPV Equation for a Spheroidal Planet	643	
	19.6 An Alternative Derivation of the BPV Equation	646	
	19.7 Dynamical Consistency	647	
	19.8 The Poisson Problem for Pressure	648	
	19.9 Variational Derivation of the Momentum Equations	649	
	19.10 Concluding Remarks	650	
ш	EXACT STEADY AND UNSTEADY NON-LINEAR SOLUTIONS	653	
20	Exact Steady Solutions of the Global Shallow-Water Equations	655	
	20.1 Preamble 20.2 The Shallow Water Equations in Spheroidal Coometry	655	
	20.2 The Shallow-Water Equations in Spheroidal Geometry	659	
	20.5 A Derivation Methodology 20.4 A Physical Interpretation of $h^{S}(\xi_{2})$	659	
	20.5 Some Illustrative Solutions	661	
	20.6 Rotated Solutions in Spherical Geometry	668	
	20.7 Interlude	669	
	20.8 The Stability of Exact Solutions to Linear Perturbation	671	
	20.9 Illustrative Examples of the Application of the Stability Analysis	682	
	20.10 Concluding Remarks	695	
	Appendix: Rotated Coordinate Transformations	695	
21	Exact 3D Steady Solutions of Global Equation Sets		
	21.1 Preamble	698	
	21.2 A Unified Quartet of Governing Equations	699	
	21.3 Simplification for Steady, Axially Symmetric Flow	700	
	21.4 Compatibility Constraints for Balance	701	
	21.5 A Change of Dependent Variable	703	
	21.6 Construction of Exact Steady Solutions	705	
	21.7 A Generalised Thermal-Wind Equation	708	
	21.0 Intel induction Examples	/10	
	21.7 Concluding Remarks	/21	

xii			Contents
	22	Exact Unsteady Solutions of the Barotropic Potential Vo	ticity
		Equation over an Ellipsoid	723
		22.1 Preamble	723
		22.2 Derivation of Exact Unsteady Solutions	725
		22.3 A Complementary Derivation of Exact Unsteady Solutions	737
		22.4 Diagnosis of Pressure for a Particular Solution	739
		22.5 Diagnosis of Pressure for a Family of Solutions	742
		22.6 Concluding Remarks	744
	23	Exact Unsteady Solutions in 3D over an Ellipsoidal Planet	746
		23.1 Preamble	746
		23.2 A Quartet of Equation Sets for Unforced 3D Fluid Flow over a R	otating
		Ellipsoidal Planet	747
		23.3 Preparatory Steps	750
		23.4 Exact Barotropic Solutions over an Ellipsoid	756
		23.5 A Family of Exact, Unsteady 3D Solutions	760
		23.6 A Particular Exact, Unsteady, 3D Solution	761
		23.7 The Top Boundary Condition	762
		23.8 Test Cases for Validating 3D Dynamical Cores	762
		23.9 Concluding Remarks	771
	Арр	pendix: Vector Identities	773
	Refe	erences	777
	Inde	ex	784