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Foreword

Francis Bach, INRIA

Characterizing and analyzing probability distributions through their moments

has a long history in probability, statistics, optimization, signal processing,

machine learning and all related fields. Christoffel–Darboux (CD) kernels are

well-studied mathematical objects which were originally introduced for very

different purposes. They turn out to benefit from interesting properties within

a moment-based analysis context leading to interesting applications.

The theory of CD kernels and their relationship to moments is more than a

century old, and is still an active field of mathematical research. The motivations

for studying such objects arose from fundamental mathematics, with orthogonal

polynomials and approximation theory, and have remained quite disconnected

to applied disciplines centered on inference from data. Yet CD kernels turn out to

have several appealing properties from an empirical inference perspective. They

can be defined from moments, requiring only conceptually simple numerical

operations. Furthermore, theory shows that many subtle properties of the

underlying distribution can be obtained from the CD kernels of increasing

orders, such as its support.

This book demonstrates the potential of CD kernels as an empirical inference

tool in a data analysis context. It investigates the consequences of the favorable

properties of CD kernels in a statistical context where one only has access to

empirical measures and empirical moments. This original thematic positioning

naturally leads to questions at the interface between applied statistical inference

and the CD kernel literature. These include statistical connections between

empirical Christoffel functions and its large-sample limit, quantitative estimates

and bounds, and consequences for applications.

Interestingly, the Christoffel–Darboux kernel is a reproducing kernel for a

space of polynomials, a notion that is now common in statistics and machine

ix
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x Foreword

learning. The construction is, however, very different with a sample dependency

of underlying scalar product and norm, which are adapted to the empirical

measure. This contrasts with more usual machine learning applications where

the scalar product is fixed and given, and provides an efficient basis for

polynomial estimation with a natural interpretation for increasing degree orders.

Many aspects of the theory of Christoffel functions and the associated

Christoffel–Darboux kernels are well established and have become classical

in the polynomial approximation literature. This book provides a unified and

clear exposition of the main tools and algorithms, with a strong focus on data

analysis applications. It shows in particular how the new polynomial kernels

can be efficiently used for many relevant tasks, such as support estimation,

outlier detection or experimental design.
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Preface

Among the many positive-definite kernels appearing in classical analysis,

approximation theory, probability, mathematical physics, control theory and

more recently in machine learning, the Christoffel–Darboux (CD) kernel

stands out by its numerical accessibility from raw data and its versality in

encoding/decoding fine properties of the generating measure. Indeed this unique

feature was recognized very early and was exploited over a century and a half

via surprising developments. One can safely draw a parallel: just as the power

moment problem is the quintessential inverse problem, the CD kernel is the

prototypical positive-definite reproducing kernel. While the computationally

oriented practitioner may think that dealing with real monomials brings

instability, we argue that complex monomials restricted to the unit circle or

higher-dimensional tori are the very stable ubiquitous Fourier modes.

The CD kernel has a particular property that enables us to identify the

underlying reproducing kernel Hilbert space (RKHS) inner product with a

bilinear form induced by a given measure over a finite-dimensional function

space. This feature allows us to develop a rich theory describing the relation

between the Christoffel–Darboux kernel and the underlying measure in a data

analysis context. Our aim in this book is to explain this property and its

application in data analysis and the numerical treatment of statistical data.

Another of our goals is to make it straightforward for the non-expert reader

to obtain further insights about the role of the Christoffel function in function

theory, approximation theory and the spectral analysis of dynamical systems,

as well as sketching some possible extensions (e.g. to Lebesgue Lp (µ) spaces).

Since the Christoffel function and the Christoffel–Darboux kernel have a long

mathematical history, we confine ourselves on the one hand to describing in a

streamlined manner their classical theory and on the other to giving an up-to-

date collection of results that provide a theoretical basis for such applications.

Examples of these include:

xiii
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xiv Preface

Figure 1 N = 1040 and n = 8; points with size and color proportional to the

value of 1/Λ
µN

n .

• outlier detection, whereΛ
µN

n provides a simple test to decide whether a point

x of the cloud can be considered as an outlier;

• density estimation, when µN is the empirical measure µN on a cloud of

points drawn for some unknown probability distribution µ on Ω, with a

density with respect to Lebesgue measure on Ω;

• manifold learning: when the cloud of points is supported on a subset of

a manifold (e.g. the sphere) or on an algebraic variety, can we detect the

manifold (or algebraic variety) and its dimension?

To better appreciate the simplicity of the approach, consider the cloud of two-

dimensional points shown in Figure 1. Most points are in an annulus and the

color and size of a point ξ is proportional to the value of Λ
µN

n (ξ )−1 at this

point. Therefore all points ξ with “color” Λ
µN

n (ξ ) ≤ τ (for some threshold τ)

are declared potential outliers. In Figure 1 one clearly sees that points with

colors close to pink, red, or brown, are “outside” the annulus.

Of course, when µN is the empirical measure supported on a sample drawn

from some distribution µ on Ω, to obtain rigorous asymptotic results on the

unknown µ and Ω, it is expected that one has to carefully scale the degree n

with the size N of the sample. This issue is clearly particular to data analysis

because one uses an empirical measure µN on a typically finite sample. We

show how such asymptotic results can be rigorously justified in this data analysis

framework.

By its nature, our text interlaces distant themes, over-simplifies most of

the theoretical background and sacrifices fine tuning for wide accessibility
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Preface xv

and utility. We are aware that balancing such opposite tendencies leads to

brutal omissions. The story does not end here. We apologize in advance to the

neglected parties and invite them to take our essay as a basis for exploring novel

ramifications of Christoffel–Darboux analysis.

Having said all that, we have to recognize the lasting creative power of the

two founders of the theory. The genius of E. B. Christoffel emanates from

every page of the astounding collection Butzer and Fehér (1981). Darboux’s

innovative brilliance was recognized by all leading figures of the mathematical

landscape (Lippmann et al., 1912). His eulogy in Hilbert (1920) is as fresh and

accurate now as it was at the time of its publication a century ago.
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