Contents

List of Figures xiii
List of Tables xvii
Preface xix
Acknowledgments xx

Chapter 1 Tensor Calculus — A Brief Overview 1

1.1 Introduction 1
1.2 Transformation of Coordinates 1
1.3 Covariant and Contravariant Vector and Tensor 2
1.4 Operations on Tensors 6
1.5 Generalized Kronecker Delta 9
1.6 The Line Element 11
1.7 Levi-Civita Tensor or Alternating Tensor 18
1.8 Christoffel Symbols 20
1.9 Affine Connection 22
1.10 Covariant Derivative 24
1.11 Curvature Tensor 27
1.12 Ricci Tensor 29
1.13 Ricci Scalar 30
1.14 Space of Constant Curvature 32
1.15 The Affine Connection in Riemannian Geometry 36
1.16 Geodesic Coordinate 37
1.17 Bianchi Identity 38
1.18 Einstein Tensor 39
1.19 Weyl Tensor 41

Chapter 2 Geodesics 45

2.1 Geodesics Equation 45
2.2 Derivation of Euler–Lagrange Equation 46
2.3 Geodesic Equation in Curved Spacetime 47
2.4 Geodesic Deviation 49
2.5 Geodesics Are Auto Parallel 49
2.6 Raychaudhuri Equation 50
Table of Contents

Chapter 3 Einstein Field Equations
3.1 Introduction 61
3.2 Three Types of Mass 62
3.3 Einstein Tensor 62
3.4 Some Useful Variations 63
3.5 Action Integral for the Gravitational Field 63
3.6 Einstein’s Equation from Variational Principle 64
3.7 Some Modified Theories of Gravity 76

Chapter 4 Linearized Gravity
4.1 Newtonian Gravity 85
4.2 Newtonian Limit of Einstein Field Equations or Weak Field Approximation of Einstein Equations 88
4.3 Poisson Equation as an Approximation of Einstein Field Equations 90
4.4 Gravitational Wave 92

Chapter 5 Lie Derivatives and Killing’s Equation
5.1 Introduction 95
5.2 Lie Derivative of a Scalar 96
5.3 Lie Derivative of Contravariant Vector 97
5.4 Lie Derivative of Covariant Vector 97
5.5 Lie Derivative of Covariant and Contravariant Tensors of Order Two 98
5.6 Killing Equation 101
5.7 Stationary and Static Spacetimes 108
5.8 Spherically Symmetric Spacetime 109
5.9 Cylindrically Symmetric Spacetime (Axially Symmetry) 110

Chapter 6 Spacetimes of Spherically Symmetric Distribution of Matter and Black Holes
6.1 Spherically Symmetric Line Element 115
6.2 Schwarzschild Solution or Exterior Solution 117
6.3 Vacuum Solution or Exterior Solution with Cosmological Constant 122
6.4 Birkhoff’s Theorem 123
6.5 Schwarzschild Interior Solution 126
6.6 The Tolman–Oppenheimer–Volkoff Equation 127
6.7 The Structure of Newtonian Star 129
6.8 Isotropic Coordinates 138
6.9 Interaction between Gravitational and Electromagnetic Fields 146
Contents

Chapter 7 **Particle and Photon Orbits in the Schwarzschild Spacetime** 159
7.1 Motion of Test Particle 159
7.2 Experimental Test for General Relativity 161
7.3 Gravitational Redshift 171
7.4 Stable Circular Orbits in the Schwarzschild Spacetime 173

Chapter 8 **Causal Structure of Spacetime** 187
8.1 Introduction 187
8.2 Causality 187
8.3 Causal Relation 196
8.4 Causal Function 210

Chapter 9 **Exact Solutions of Einstein Equations and Their Causal Structures** 219
9.1 Minkowski Spacetime 219
9.2 de Sitter Spacetime 225
9.3 Anti-de Sitter Space 230
9.4 Robertson–Walker Spaces 233
9.5 Penrose Diagrams of Robertson–Walker Spacetime for the Dust Case 235
9.6 Spatially Homogeneous Cosmological Models 237
9.7 Schwarzschild Solutions 240
9.8 Null Curves in Schwarzschild Spacetime 241
9.9 Time-like Geodesics in Schwarzschild Spacetime 242
9.10 Tortoise Coordinates 245
9.11 Eddington–Finkelstein Coordinates 245
9.12 Kruskal–Szekeres Coordinates 248
9.13 Reissner–Nordström Solution 253

Chapter 10 **Rotating Black Holes** 261
10.1 Null Tetrad 261
10.2 Null Tetrad of Some Black Holes 266
10.3 The Kerr Solution 271
10.4 The Kerr Solution from the Schwarzschild Solution 272
10.5 The Kerr–Newmann Solution from the Reissner–Nordström Solution 274
10.6 The Higher Dimensional Rotating Black Hole Solution 276
10.7 Different Forms of Kerr Solution 279
10.8 Some Elementary Properties of the Kerr Solution 283
10.9 Singularities and Horizons 284
10.10 Static Limit and Ergosphere 286
10.11 Zero Angular Momentum Observers in the Kerr Spacetime 288
10.12 Stationary Observer in the Kerr Spacetime 288
10.13 Null Geodesics in Kerr Spacetime 290
10.14 Kerr Solution in Eddington–Finkelstein Coordinates 292
10.15 Maximal Extension of Kerr Spacetime 293
10.16 The Hawking Radiation 295
10.17 Penrose Process 297
10.18 The Laws of Black Hole Thermodynamics 301

Chapter 11 Elementary Cosmology 305

11.1 Introduction 305
11.2 Homogeneity and Isotropy 307
11.3 Robertson–Walker Metric 309
11.4 Hubble’s Law 312
11.5 Dynamical Equation of Cosmology 313
11.6 Newtonian Cosmology 315
11.7 Cosmological Redshift 316
11.8 Derivation of Hubble’s Law 318
11.9 Angular Size 319
11.10 Number Count 320
11.11 Luminosity Distance 322
11.12 Olbers’ Paradox 324
11.13 Friedmann Cosmological Models 326
11.14 Dust Model 328
11.15 Cosmology with Λ 334
11.16 Einstein Static Universe 335
11.17 The de Sitter Universe 335
11.18 Perfect Cosmological Principle 337
11.19 Particle and Event Horizon 338
11.20 Radiation Model 339
11.21 Cosmological Inflation 341
11.22 Cosmography Parameters 342

Chapter 12 Elementary Astrophysics 345

12.1 Stellar Structure and Evolution of Stars 345
12.2 Equation of Stellar Structure 348
12.3 Simple Stellar Model 350
12.4 Jeans Criterion for Star Formation 357
12.5 The Birth of Star 360
12.6 White Dwarfs 361
12.7 Neutron Stars 364
12.8 Gravitational Collapse 366
12.9 Oppenheimer–Snyder Nonstatic Dust Model 366
12.10 Gravitational Lensing 370
12.11 General Spherically Symmetric Spacetime and the Deflection Angle 371
Contents

Appendix A Extrinsic Curvature or Second Fundamental Form 379
Appendix B Lagrangian Formulation of General Relativity 383
Appendix C 3+1 Decomposition 391

Bibliography 395
Index 399