Mechanical Behavior of Materials

Third Edition

Fully revised and updated, the new edition of this classic textbook provides a balanced mechanics-materials approach to understanding the mechanical behavior of materials.

It presents fundamental mechanisms operating at micro- and nanometer scales across a wide range of materials, in a way that is mathematically simple and requires no extensive knowledge of materials, and demonstrates how the microstructures and mesostructures of these materials determine their mechanical behavior.

Accompanied online by further resources for instructors, this is the ideal introduction for senior undergraduate and graduate students in materials science and engineering.

New to this edition

- New coverage of biomaterials, electronic materials, and cellular materials alongside established coverage of metals, polymers, ceramics, and composites.
- New testing techniques such as micropillar compression and electron backscattered diffraction.
- Important new materials, such as high-entropy alloys, are introduced.
- A stronger emphasis on real-world test data and tables, to train students in practical materials applications.
- Over 40 new figures, over 100 worked examples, and over 740 exercises, including over 280 new exercises, to help cement student understanding.

Marc A. Meyers is a Distinguished Professor of Materials Science and Engineering at the University of California, San Diego, known for his expertise on the dynamic behavior of materials. He is a recipient of the TMS Educator Award (2013), the ASM International Albert Easton White Distinguished Teacher Award (2015), and the APS George Duvall Shock Compression Science Award (2017). He is a coauthor of *Biological Materials Science* (2014), and is a Fellow of TMS, ASM International, and the APS.

Krishan K. Chawla is an Emeritus Professor at the University of Alabama at Birmingham, and a former Program Director for Metals and Ceramics in the US NSF Division of Materials Research. He is the editor and chairman of the ASM Editorial Board for *International Materials Reviews*, the author of *Fibrous Materials*, 2nd edn. (2016), and a Fellow of ASM International.

Mechanical Behavior of Materials

THIRD EDITION

Marc A. Meyers

University of California, San Diego

Krishan K. Chawla University of Alabama at Birmingham

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781108837903

DOI: 10.1017/9781108943383

Second edition © Cambridge University Press 2009

Third edition © Marc A. Meyers and Krishan K. Chawla 2025

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published in 1998 by Prentice-Hall Second edition 2009 Cambridge University Press 6th printing 2013 Third edition 2025

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Meyers, Marc A., author. | Chawla, Krishan Kumar, 1942– author.
Title: Mechanical behavior of materials / Marc A. Meyers, University of California, San Diego, Krishan K. Chawla, University of Alabama, Birmingham.
Description: Third edition. | Cambridge ; New York, NY, USA : Cambridge University Press, [2025] | Includes bibliographical references and index.
Identifiers: LCCN 2024014471 (print) | LCCN 2024014472 (ebook) | ISBN 9781108837903 (hardback) | ISBN 9781108943383 (epub)
Subjects: LCSH: Strength of materials.
Classification: LCC TA403 .M554 2025 (print) | LCC TA403 (ebook) | DDC 620.1/12–dc23/eng/20240531
LC record available at https://lccn.loc.gov/2024014471
LC ebook record available at https://lccn.loc.gov/2024014472
ISBN 978-1-108-83790-3 Hardback
Additional resources for this publication at www.cambridge.org/mbm3

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Lovingly dedicated to the memory of my parents, Henri and Marie-Anne.

Marc André Meyers

Lovingly dedicated to the memory of my parents, Manohar L. and Sumitra Chawla.

Krishan Kumar Chawla

Contents

Preface to the Third Edition	<i>page</i> xvii
Preface to the Second Edition	xix
A Note to the Reader	xxi
Chapter 1 Materials: Structure, Properties, and Performance	1
1.1 Introduction	1
1.2 Monolithic, Composite, and Hierarchical Materials	3
1.3 Structure of Materials	10
1.3.1 Crystal Structures	11
1.3.2 Metals	15
1.3.3 Ceramics	21
1.3.4 Glasses	27
1.3.5 Polymers	29
1.3.6 Liquid Crystals	39
1.3.7 Biological Materials and Biomaterials	40
1.3.8 Porous and Cellular Materials	46
1.3.9 Nano- and Microstructures of Biological Materia	ls 48
1.3.10 The Sponge Spicule: An Example of a	
Biological Material	60
1.3.11 Active (or Smart) Materials	61
1.3.12 Electronic Materials	63
1.3.13 Nanotechnology	64
1.4 Strength of Real Materials	66
Suggested Reading	69
Exercises	71
Chanter 2. Electicity and Viscoalacticity	77
	11
2.1 Introduction	77
2.2 Longitudinal Stress and Strain	77
2.3 Strain Energy (or Deformation Energy) Density	84
2.4 Shear Stress and Strain	87
2.5 Poisson's Ratio	90
2.6 More Complex States of Stress	93
2.7 Graphical Solution of a Biaxial State of Stress:	
The Mohr Circle	97

vii

viii Contents

	2.8	Volumetric Strain or Dilation	102
	2.9	Pure Shear: Relationship between G and E	103
	2.10	Anisotropic Effects on Matrix Formulation of Stiffness	
		and Compliance	105
		2.10.1 Tensors	105
		2.10.2 Transformation of a Second-Rank Tensor	106
		2.10.3 Hooke's Law in Tensorial Form	106
	2.11	Elastic Properties of Polycrystals	119
	2.12	Elastic Properties of Materials	125
		2.12.1 Elastic Properties of Metals	125
		2.12.2 Elastic Properties of Ceramics	125
		2.12.3 Elastic Properties of Polymers	132
		2.12.4 Elastic Constants of Unidirectional Fiber-	
		Reinforced Composite	132
	2.13	Viscoelasticity	136
		2.13.1 Storage and Loss Moduli	139
	2.14	Rubber Elasticity	141
	2.15	Mooney–Rivlin Equation	147
	2.16	Elastic Properties of Biological Materials	150
		2.16.1 Blood Vessels	150
		2.16.2 Articular Cartilage	153
		2.16.3 Mechanical Properties at the Nanometer Level	156
	2.17	Elastic Properties of Electronic Materials	160
	2.18	Elastic Constants and Bonding	163
	Sugg	sested Reading	178
	Exer	cises	178
Chapter 3	Plast	icity	187
	3.1	Introduction	187
	3.2	Plastic Deformation in Tension	189
		3.2.1 Tensile Curve Parameters	196
		3.2.2 Necking	198
		3.2.3 Strain Rate Effects	202
	3.3	Plastic Deformation in Compression Testing	210
	3.4	The Bauschinger Effect	213
	3.5	Plastic Deformation of Polymers	214
		3.5.1 Stress–Strain Curves	214
		3.5.2 Glassy Polymers	216
		3.5.3 Semicrystalline Polymers	216
		3.5.4 Viscous Flow	218
		3.5.5 Adiabatic Heating	218

Contents ix

		210
	3.6 Plastic Deformation of Glasses	219
	3.6.1 Microscopic Deformation Mechanisms	221
	3.6.2 Temperature Dependence and Viscosity	222
	3.7 Flow, Yield, and Failure Criteria	225
	3.7.1 Maximum-Stress Criterion (Rankine)	226
	3.7.2 Maximum-Shear-Stress Criterion (Tresca)	226
	3.7.3 Maximum-Distortion-Energy Criterion (von Mises)	227
	3.7.4 Graphical Representation and Experimental	
	Verification of Rankine, Tresca, and von	
	Mises Criteria	227
	3.7.5 Failure Criteria for Brittle Materials	231
	3.7.6 Yield Criteria for Ductile Polymers	235
	3.7.7 Failure Criteria for Composite Materials	238
	3.7.8 Yield and Failure Criteria for Other	
	Anisotropic Materials	241
	3.8 Hardness	242
	3.8.1 Macroindentation Tests	243
	3.8.2 Microindentation Tests	250
	3.8.3 Tabor Equation	252
	3.8.4 Nanoindentation	254
	3.9 Formability: Important Parameters	258
	3.9.1 Plastic Anisotropy	261
	3.9.2 Punch-Stretch Tests and Forming-Limit Curves	
	(or Keeler–Goodwin Diagrams)	262
	3.10 Euler Buckling or Buckling of a Strut or a Column	266
	3.11 Muscle Force	268
	3.12 Mechanical Properties of Some Biological Materials	273
	Suggested Reading	277
	Exercises	277
Chapter 4	Imperfections: Point and Line Defects	286
	4.1 Introduction	286
	4.2 Theoretical Shear Strength	287
	4.3 Atomic or Electronic Point Defects	290
	4.3.1 Equilibrium Concentration of Point Defects	291
	4.3.2 Production of Point Defects	295
	4.3.3 Effect of Point Defects on Mechanical Properties	296
	4.3.4 Radiation Damage	297
	4.3.5 Ion Implantation	302
	4.4 Line Defects	303
	4.4.1 Experimental Observation of Dislocations	308
	4.4.2 Behavior of Dislocations	310
	4.4.3 Stress Field Around Dislocations	314

x Contents

		4.4.4 Energy of Dislocations	316
		4.4.5 Force Required to Bow a Dislocation	321
		4.4.6 Dislocations in Various Structures	323
		4.4.7 Dislocations in Ceramics	335
		4.4.8 Sources of Dislocations	339
		4.4.9 Dislocation Pileups	345
	2	4.4.10 Intersection of Dislocations	346
	2	4.4.11 Deformation Produced by Motion of Dislocations	
		(Orowan's Equation)	348
	2	4.4.12 The Peierls-Nabarro Stress	351
	2	4.4.13 The Movement of Dislocations: Temperature	
		and Strain Rate Effects	354
	2	4.4.14 Dislocations in Electronic Materials	357
	Sugg	ested Reading	360
	Exer	cises	361
Chapter 5	Impe	rfections: Interfacial and Volumetric Defects	369
	5.1 1	Introduction	369
	5.2 0	Grain Boundaries	369
	4	5.2.1 Tilt and Twist Boundaries	374
	4	5.2.2 Energy of a Grain Boundary	376
	4	5.2.3 Variation of Grain-Boundary Energy	
		with Misorientation	379
	4	5.2.4 Coincidence Site Lattice (CSL) Boundaries	383
	4	5.2.5 Grain-Boundary Triple Junctions	383
	4	5.2.6 Grain-Boundary Dislocations and Ledges	384
	4	5.2.7 Electron Backscattered Diffraction (EBSD)	384
	4	5.2.8 Grain Boundaries as a Packing of Polyhedral Units	386
	5.3	Twinning and Twin Boundaries	388
	-	5.3.1 Crystallography and Morphology	388
		5.3.2 Mechanical Effects	393
	5.4 (Grain Boundaries in Plastic Deformation (Grain-Size	• • • •
		Strengthening)	396
	-	5.4.1 Hall–Petch Theory	400
	-	5.4.2 Cottrell's Theory	401
	2	5.4.3 Li's Theory	402
	5 5 6	5.4.4 Meyers–Ashworth Theory	403
	5.5 (Juner Internal Obstacles	405
	5.0 I	Nation ystalline iviateriais Volumetrie er Tridimensional Defects	408
	J./ 1	volumente of finalmensional Defects	411 717
	5.0 I	Migramatar and Submigramatar Compression (Dillar) Testing	414 114
	5.9 I Suga	rested D eading	410 117
	Sugg Evor	cises	+1/ /10
	LYCI	01005	+10

CAMBRIDGE

Cambridge University Press & Assessment 978-1-108-83790-3 — Mechanical Behavior of Materials 3rd Edition Marc A. Meyers , Krishan K. Chawla Frontmatter <u>More Information</u>

	Contents	xi
Chapter 6 Geometry of Deformation and Work-Hardening	42	24
6.1 Introduction	42	24
6.2 Geometry of Deformation	42	28
6.2.1 Stereographic Projections	42	28
6.2.2 Stress Required for Slip	43	60
6.2.3 Shear Deformation	43	6
6.2.4 Slip in Systems and Work-Hardening	43	\$7
6.2.5 Independent Slip Systems in Polycrystals	44	0
6.3 Work-Hardening in Polycrystals	44	1
6.3.1 Taylor's Theory	44	3
6.3.2 Seeger's Theory	44	4
6.3.3 Kuhlmann-Wilsdorf's Theory	44	-5
6.4 Softening Mechanisms	44	-8
6.5 Texture Strengthening	45	;2
Suggested Reading	45	5
Exercises	45	,5
Chapter 7 Fracture: Macroscopic Aspects	46	52
7.1 Introduction	46	52
7.2 Theoretical Tensile Strength	46	55
7.3 Stress Concentration and Griffith Criterion of	Fracture 46	58
7.3.1 Stress Concentrations	46	59
7.3.2 Stress Concentration Factor	46	<u>,</u> 9
7.4 Griffith Criterion	47	'6
7.5 Crack Propagation with Plasticity	48	\$1
7.6 Linear Elastic Fracture Mechanics	48	\$3
7.6.1 Fracture Toughness	48	\$3
7.6.2 Hypotheses of LEFM	48	\$5
7.6.3 Crack-Tip Separation Modes	48	\$5
7.6.4 Stress Field in an Isotropic Material in	the	
Vicinity of a Crack Tip	48	\$5
7.6.5 Details of the Crack-Tip Stress Field in	Mode I 48	;7
7.6.6 Plastic-Zone Size Correction	49	1
7.6.7 Variation in Fracture Toughness with T	Thickness 49	93
7.7 Fracture Toughness Parameters	49	17
7.7.1 Crack Extension Force	49)7
7.7.2 Crack Opening Displacement	50	00
7.7.3 J-Integral	50	13
$7.7.6 \text{ D} = 1 \text{ diametrized and } \text{D}^{10}$	50	ю
7.7.5 Ketauonsnips among Different Fracture	;	7
1 ougnness Parameters	50	// \Q
7.0 Doot Viold Exective Machanica	50	10
1.9 Post-rield Fracture Mechanics	51	0

xii Contents

	7.10 Statistical Analysis of Failure Strength	512
	Appendix: Stress Singularity at Crack Tip	522
	Suggested Reading	525
	Exercises	525
Chapter 8	Fracture: Microscopic Aspects	532
	8.1 Introduction	532
	8.2 Fracture in Metals	534
	8.2.1 Crack Nucleation	534
	8.2.2 Ductile Fracture	535
	8.2.3 Brittle, or Cleavage, Fracture	547
	8.3 Fracture in Ceramics	554
	8.3.1 Microstructural Aspects	554
	8.3.2 Effect of Grain Size on Strength of Ceramics	562
	8.3.3 Fracture of Ceramics in Tension	563
	8.3.4 Fracture in Ceramics Under Compression	566
	8.3.5 Thermally Induced Fracture in Ceramics	572
	8.4 Fracture in Polymers	575
	8.4.1 Brittle Fracture	576
	8.4.2 Crazing and Shear Yielding	577
	8.4.3 Fracture in Semicrystalline and Crystalline Polymers	581
	8.4.4 Toughness of Polymers	582
	8.5 Fracture and Toughness of Biological Materials	586
	8.6 Fracture Mechanism Maps	591
	Suggested Reading	592
	Exercises	592
Chapter 9	Fracture Testing	598
	9.1 Introduction	598
	9.2 Impact Testing	598
	9.2.1 Charpy Impact Test	599
	9.2.2 Drop-Weight Test	603
	9.2.3 Instrumented Charpy Impact Test	604
	9.4 Plane-Strain Fracture Toughness Test	606
	9.5 Crack Opening Displacement Testing	611
	9.6 J-Integral Testing	612
	9.7 Flexure Test	614
	9.7.1 Three-Point Bend Test	615
	9.7.2 Four-Point Bending	616
	9.7.3 Interlaminar Shear Strength Test	618
	9.8 Fracture Toughness Testing of Brittle Materials	620
	9.8.1 Chevron Notch Test	621
	9.8.2 Indentation Methods for Determining Toughness	623

CAMBRIDGE

Cambridge University Press & Assessment 978-1-108-83790-3 — Mechanical Behavior of Materials 3rd Edition Marc A. Meyers , Krishan K. Chawla Frontmatter <u>More Information</u>

	Contents xiii
9.9 Adhesion of Thin Films to Substrates	627
Suggested Reading	629
Exercises	629
	02)
Chapter 10 Solid Solution, Precipitation, and Dispersion Strengthe	ning 637
10.1 Introduction	637
10.2 Solid-Solution Strengthening	638
10.2.1 Elastic Interaction	639
10.2.2 Other Interactions	643
10.3 Mechanical Effects Associated with Solid Solution	ons 644
10.3.1 Well-Defined Yield Point in the Stress-	
Strain Curves	645
10.3.2 Plateau in the Stress–Strain Curve and	
Lüders Band	646
10.3.3 Strain Aging	647
10.3.4 Serrated Stress–Strain Curve	648
10.3.5 Snoek Effect	649
10.3.6 Blue Brittleness	650
10.4 Precipitation- and Dispersion-Hardening	650
10.5 Dislocation–Precipitate Interaction	659
10.6 Precipitation in Microalloyed Steels	666
10.7 Advanced Steels	671
Suggested Reading	676
Exercises	676
Chapter 11 Martensitic Transformation	682
11.1 Introduction	682
11.2 Structures and Morphologies of Martensite	682
11.3 Strength of Martensite	688
11.4 Mechanical Effects	692
11.5 Shape-Memory Effect	697
11.5.1 Shape-Memory Effect in Polymers	702
11.6 Martensitic Transformation in Ceramics	703
Suggested Reading	707
Exercises	708
Chapter 12 Special Materials: Intermetallics and Foams	711
12.1 Introduction	711
12.2 Silicides	711
12.3 Ordered Intermetallics	712
12.3.1 Dislocation Structures in Ordered Interm	etallics 714
12.3.2 Effect of Ordering on Mechanical Proper	ties 717
12.3.3 Ductility of Intermetallics	724

xiv Contents

	12.4 Cellular Materials	730
	12.4.1 Structure	730
	12.4.2 Modeling of the Mechanical Response	732
	12.4.3 Comparison of Predictions and	
	Experimental Results	736
	12.4.4 Syntactic Foam	736
	12.4.5 Plastic Behavior of Porous Materials	737
	Suggested Reading	741
	Exercises	741
Chapter 13	Creep and Superplasticity	745
	13.1 Introduction	745
	13.2 Correlation and Extrapolation Methods	751
	13.3 Fundamental Mechanisms Responsible for Creep	758
	13.4 Diffusion Creep	759
	13.5 Dislocation (or Power Law) Weertman Creep	764
	13.6 Dislocation Glide	767
	13.7 Grain-Boundary Sliding	768
	13.8 Deformation-Mechanism (Weertman-Ashby) Maps	770
	13.9 Creep-Induced Fracture	772
	13.10 Heat-Resistant Materials	775
	13.11 Creep in Polymers	782
	13.12 Diffusion-Related Phenomena in Electronic Materials	791
	13.13 Superplasticity	793
	Suggested Reading	799
	Exercises	800
Chapter 14	Fatigue	811
	14.1 Introduction	811
	14.2 Fatigue Parameters and $S-N$ (Wöhler) Curves	812
	14.3 Fatigue Strength or Fatigue Life	814
	14.4 Effect of Mean Stress on Fatigue Life	817
	14.5 Effect of Frequency	820
	14.6 Cumulative Damage and Life Exhaustion	820
	14.7 Mechanisms of Fatigue	824
	14.7.1 Fatigue Crack Nucleation	824
	14.7.2 Fatigue Crack Propagation	829
	14.8 Linear Elastic Fracture Mechanics Applied to Fatigue	834
	14.8.1 Fatigue of Biomaterials	845
	14.9 Hysteretic Heating in Fatigue	84/
	14.10 Environmental Effects in Fatigue	849
	14.11 Failgue Crack Closure	849
	14.12 The Iwo-rarameter Approach	830
	14.13 The Short-Crack Problem in Fatigue	851

CAMBRIDGE

Cambridge University Press & Assessment 978-1-108-83790-3 — Mechanical Behavior of Materials 3rd Edition Marc A. Meyers , Krishan K. Chawla Frontmatter <u>More Information</u>

Contents	XV
----------	----

	14.14 Fatigue Testing	853
	14.14.1 Conventional Fatigue Tests	853
	14.14.2 Rotating Bending Machine	854
	14.14.3 Statistical Analysis of S–N Curves	854
	14.14.4 Nonconventional Fatigue Testing	855
	14.14.5 Servohydraulic Machines	857
	14.14.6 Low-Cycle Fatigue Tests	858
	14.14.7 Fatigue Crack Propagation Testing	859
	Suggested Reading	860
	Exercises	861
Chapter 15	Composite Materials	870
	15.1 Introduction	870
	15.2 Types of Composites	870
	15.3 Important Reinforcements and Matrix Materials	873
	15.4 Microstructural Aspects and Importance of the Matrix	874
	15.5 Interfaces in Composites	875
	15.5.1 Crystallographic Nature of the Fiber–	
	Matrix Interface	876
	15.5.2 Interfacial Bonding in Composites	877
	15.5.3 Interfacial Interactions	878
	15.6 Properties of Composites	879
	15.6.1 Density and Heat Capacity	880
	15.6.2 Elastic Moduli	880
	15.6.3 Strength	885
	15.6.4 Anisotropic Nature of Fiber-	
	Reinforced Composites	888
	15.6.5 Aging Response of Matrix in MMCs	889
	15.6.6 Toughness	889
	15.7 Load Transfer from Matrix to Fiber	892
	15.7.1 Fiber and Matrix Elastic	893
	15.7.2 Fiber Elastic and Matrix Plastic	897
	15.8 Fracture in Composites	899
	15.8.1 Single and Multiple Fracture	899
	15.8.2 Failure Modes in Composites	900
	15.9 Some Fundamental Characteristics of Composites	903
	15.9.1 Heterogeneity	904
	15.9.2 Anisotropy	904
	15.9.3 Shear Coupling	905
	15.9.4 Statistical Variation in Strength	907
	15.10 Functionally Graded Materials	907
	15.11 Applications	908
	15.11.1 Aerospace Applications	908
	15.11.2 Nonaerospace Applications	909

> xvi Contents

	15.12 Laminated Composites	912
	Suggested Reading	915
	Exercises	915
Chapter 16	Environmental Effects	921
	16.1 Introduction	921
	16.2 Electrochemical Nature of Corrosion in Metals	921
	16.2.1 Galvanic Corrosion	922
	16.2.2 Uniform Corrosion	923
	16.2.3 Crevice Corrosion	923
	16.2.4 Pitting Corrosion	924
	16.2.5 Intergranular Corrosion	924
	16.2.6 Selective Leaching	924
	16.2.7 Erosion-Corrosion	924
	16.2.8 Radiation Damage	924
	16.2.9 Stress Corrosion	925
	16.3 Oxidation of Metals	925
	16.4 Environmentally Assisted Fracture in Metals	926
	16.4.1 Stress Corrosion Cracking (SCC)	926
	16.4.2 Hydrogen Damage in Metals	931
	16.4.3 Liquid and Solid Metal Embrittlement	938
	16.5 Environmental Effects in Polymers	939
	16.5.1 Chemical or Solvent Attack	940
	16.5.2 Swelling	940
	16.5.3 Oxidation	941
	16.5.4 Radiation Damage	942
	16.5.5 Environmental Crazing	942
	16.5.6 Alleviating the Environmental Damage	
	in Polymers	943
	16.6 Environmental Effects in Ceramics	944
	16.6.1 Oxidation of Ceramics	948
	Suggested Reading	948
	Exercises	948
Appendixes		951
Index		959

Preface to the Third Edition

We are very pleased to offer this third edition of *Mechanical Behavior of Materials*. The first edition was published by Prentice-Hall in 1998. The second edition, a Cambridge University Press imprint, came out in 2009. The third edition is now seeing the light of the day in 2025. Needless to say, we have maintained the same fundamental theme of the book, viz., the fundamental mechanisms responsible for the mechanical properties of different materials under a variety of environmental conditions. The unique feature of the book is the presentation in a unified manner of important principles responsible for mechanical behavior of materials, metals, polymers, ceramics, composites, biological materials, electronic materials. The underlying theme is that structure (at the micro or nanometer level) of the material controls the properties of the material.

Although the basic theme of the book remains unchanged, the third edition has been updated with:

- State-of-the-art coverage of the major developments in materials, such as steels, ceramics, polymers, composites, biologic materials. Specifically, we discuss: unique characteristics of biological materials including the Arzt heptahedron and structural design elements which enable a quantitative engineering treatment in Chapter 1; the Euler equation, elasticity averaging methods of isostress and isostrain (Voigt and Reuss), and anisotropic effects to matrix formulation of stiffness in Chapter 2; High-Entropy Alloys in Chapter 10; Micropillar mechanical testing, EBSD (electron back-scattered diffraction), a powerful characterization method, and coincidence site lattice update in Chapter 5; fracture toughness of biological materials in Chapter 7.
- Many new figures to improve the presentation and to clarify the concepts presented.
- Fresh worked examples and exercises that help the students test their understanding.

The book is principally meant for use in the upper division and graduate level courses of mechanical engineering, and materials science and engineering departments. However, it will also be a great source of reference material to the practicing engineer, scientist, and researcher. We have kept the level of mathematics quite simple, and suggest the reader to refer back to Chapter 1 if needed, as it provides the basic materials-level information necessary to study this subject.

MAM would like to thank Sheron Tavares and Aomin Huang for their competent and dedicated work in the revision and permissions. This third edition would never have seen the day if it were not for them. He also thanks Boya Li for

xvii

xviii Preface to the Third Edition

contributing with exercises. He is grateful to his children Marc Meyers and Cristina Windsor, his granddaughters Claire, Isabelle, and Abigail, his brothers Pedro, Jacques, and Carlos for supporting him through this process. A special thanks is due to Linda Homayoun.

KKC is grateful to K. Carlisle, N. Chawla, A. Goel, M. Koopman, R. Kulkarni, A Mortensen, B. R. Patterson, P.D. Portella, and U. Vaidya, for their innumerable discussions and counsels. He is especially grateful to Kanika Chawla and M. Armstrong for their help with figures. As always, he is thankful to his family members, Anita, Kanika, Nikhil, Nimeesh, and Nivi for their forbearance.

Preface to the Second Edition

The second edition of Mechanical Behavior of Materials has revised and updated material in every chapter to reflect the changes occurring in the field. In view of the increasing importance of bioengineering, a special emphasis is given to the mechanical behavior of biological materials and biomaterials throughout this second edition. A new chapter on environmental effects has been added. Professors Fine and Voorhees¹ make a cogent case for integrating biological materials into materials science and engineering curricula. This trend is already in progress at many US and European universities. Our second edition takes due recognition of this important trend. We have resisted the temptation to make a separate chapter on biological and biomaterials. Instead, we treat these materials together with traditional materials, viz., metals, ceramics, polymers, etc. In addition, taking due cognizance of the importance of electronic materials, we have emphasized the distinctive features of these materials from a mechanical behavior point of view.

The underlying theme in the second edition is the same as in the first edition. The text connects the fundamental mechanisms to the wide range of mechanical properties of different materials under a variety of environments. This book is unique in that it presents, in a unified manner, important principles involved in the mechanical behavior of different materials: metals, polymers, ceramics, composites, electronic materials, and biomaterials. The unifying thread running throughout is that the nano/microstructure of a material controls its mechanical behavior. A wealth of micrographs and line diagrams are provided to clarify the concepts. Solved examples and chapter-end exercise problems are provided throughout the text.

This text is designed for use in mechanical engineering and materials science and engineering courses by upper division and graduate students. It is also a useful reference tool for the practicing engineers involved with mechanical behavior of materials. The book does not presuppose any extensive knowledge of materials and is mathematically simple. Indeed, Chapter 1 provides the background necessary. We invite the reader to consult this chapter off and on because it contains very general material.

In addition to the major changes discussed above, the mechanical behavior of cellular and electronic materials was incorporated. Major reorganization of material has been made in the following parts: elasticity; Mohr circle treatment; elastic constants of fiber reinforced composites; elastic properties of biological and of biomaterials; failure criteria of composite materials; nanoindentation technique

¹ M. E. Fine and P. Voorhees, "On the evolving curriculum in materials science & engineering," *Daedalus*, Spring 2005, 134.

xx Preface to the Second Edition

and its use in extracting material properties; etc. New solved and chapter-end exercises are added. New micrographs and line diagrams are provided to clarify the concepts.

We are grateful to many faculty members who adopted the first edition for classroom use and were kind enough to provide us with very useful feedback. We also appreciate the feedback we received from a number of students. MAM would like to thank Kanika Chawla and Jennifer Ko for help in the biomaterials area. The help provided by Marc H. Meyers and M. Cristina Meyers in teaching him the rudiments of biology has been invaluable. KKC would like thank K. B. Carlisle, N. Chawla, A. Goel, M. Koopman, R. Kulkarni, and B. R. Patterson for their help. KKC acknowledges the hospitality of Dr. P. D. Portella at Federal Institute for Materials Research and Testing (BAM), Berlin, Germany, where he spent a part of his sabbatical. As always, he is grateful to his family members, Anita, Kanika, Nikhil, and Nivi for their patience and understanding.

A Note to the Reader

Our goal in writing *Mechanical Behavior of Materials* has been to produce a book that will be the pre-eminent source of fundamental knowledge about the subject. We expect this to be a guide to the student beyond his or her college years. There is, of course, a lot more material than can be covered in a normal semester-long course. We make no apologies for that in addition to being a classroom text, we want this volume to act as a useful reference work on the subject for the practicing scientist, researcher, and engineer.

Specifically, we have an introductory Chapter 1 (Materials: Structure, Properties, and Performance) dwelling on the themes of the book: structure, mechanical properties, and performance. This section introduces some key terms and concepts that are covered in detail in later chapters. We advise the reader to use this chapter as a handy reference tool, and consult it as and when required. We strongly suggest that the instructor use this first chapter as a self-study resource. Of course, individual sections, examples, and exercises can be added to the subsequent material as and when desired.

Enjoy!

xxi