Index

- Acoustic emissions, 100
- Acoustic waves, 69
- Activation energy, 35, 75, 78, 203
- Age-hardening, 65
- Ageing, 64
- Al, 55, 59, 130
- Al₂Cu, 64
- Alloy
 - Al, 99
 - Al-Cu, 64
 - Cu-Ni, 59
 - Cu-Zn (brass), 70
 - Fe-C, 71
 - Ni superalloy, 63
 - Ni-50Ti, 71
 - Ni-Ti, 33
 - Shape memory, 115
 - Superalastic, 115
- Alumina, 195
- Aluminium powder, 66
- American Society of Testing and Materials, 81
- Amorphous materials, 66
- Amorphous metals, 201
- Anisotropy, 37, 85, 100–101, 117, 139, 152, 162, 167, 169
- Annealing, 86
- Annealing twins, 70
- Armco Iron, 62
- Arrhenius, 34, 75, 78
- ASTM, 81
- Austenite, 73, 99
- Back-stress, 117
- Ballistic impact, 74
- Ballistic indentation, 249
- Ballistics, 31
- Barrelling, 108, 112, 113, 119, 159
- Basquin law, 242
- Bauschinger
 - Johann, 117
- Bauschinger effect, 107, 117
- BCC structure, 60
- Beam bending, 219
- Beam curvature, 219, 256
- Beam deflections, 221, 256
- Beam stiffness, 221, 232
- Bedding down, 113
- Bend test fixtures, 225
- Bending moments, 219
- Berkovich indenters, 137
- Biaxial tensile testing, 100
- Bifurcation buckling, 234
- Bonding
 - Covalent, 43
 - Ionic, 43
 - Metallic, 43
- Brass, 130
- Brasses, 99
- Brazier buckling, 234
- Brinell
 - Johan August, 125
 - Brinell hardness test, 125, 134
- British Standards Institute, 81
- Brittle materials
 - Bend testing, 225
- BSI, 81
- Buckling, 108, 209
 - Brazier, 234
 - Hollow tubes, 232
- Bulk modulus, 19
- Burgers
 - Johannes, 44
 - Burgers circuit, 46
 - Burgers vector, 46, 50, 55
 - Butt-end shoulder, 84
- C250 maraging steel, 155
- Cantilever beam, 219, 256
- Cantilever loading, 87
- Carburizing, 242
- Castings, 5, 40
- Cavitation, 97
- Cermet, 124, 163, 173, 196
- Characteristic strain, 29
- Chemical etching, 156
- Chernov–Lüders band, 98
climb, 29, 55, 76
clip gauges, 88, 108, 113
close-packed directions, 46
close-packed planes, 46
coarsening, 65
coatings, 193, 201
Coble creep, 75
coefficient of friction, 160, 228
coefficient of restitution, 143
coherency strains, 65
coherent boundaries, 70
coherent boundary, 68
cold work, 57
compliance calibration, 87, 158
compliance tensor, 17
concerntrina folding, 233
conductivity, 61
electrical, 43
thermal, 43
Considère
Armand, 89
Considère construction, 89, 94–95
constitutive law, 29, 127, 165
constitutive laws, 59, 73, 78, 115
constraint, 86, 207, 213
constraint effect, 58
constriction, 55
contact area, 125
contact drift, 198
contact stress, 225
corvergence, 149
corvergence algorithms, 164
corvergence criterion, 165
copper, 61, 94, 139, 249
Cottrell
Alan, 60
Cottrell atmospheres, 60, 62, 98
cract initiation, 242
cract opening displacement, 241
cract propagation, 3
cract tip
plastic zone, 241
cract tip opening displacements, 88
cracking, 139
crashworthiness, 234
creep, 1, 34, 67, 74, 102, 124
Coble, 75
diffusional, 76
dislocation, 76
from nanoindentation data, 203
Nabarro–Herring, 76
primary, 34, 173
secondary, 34
tertiary, 34, 176
critical failure strain, 98
critical fracture strain, 239
critical strain criterion, 30
cross-head, 87
cross-slip, 29, 54
cruciform samples, 100
crystal structure, 85, 100
hexagonal, 69–70
tetragonal, 69
crystallographic texture, 58
Cu, 55, 86, 110, 130
cut through, 66
cutting, 31
cycic loading, 3, 87, 235
cycling frequency, 242
dead weight loading, 87, 102
deep drawing, 39
deep-drawn sheet, 101
deforamation twinning, 25, 32, 67, 74, 159
delocalized electrons, 43
depth-sensing indentation, 192
determinant, 11
diagonalising, 11
diamond, 124, 195
oxidation, 199
diamond cone, 129
diamond indenters
oxidation, 137
diamond tips, 137
DIC (digital image correlation), 59, 85, 88
diffusion, 74, 78
diffusion distances, 61
diffusional creep, 76
dilation, 16
direction cosines, 10–11, 13
dislocation, 4, 21, 29, 43
annihilation, 56
climb, 53, 55
creep, 76
cross-slip, 54, 77
density, 51, 53, 57, 77, 85, 193, 206
dege, 45, 60
energy, 52
energy of, 48
force on, 48, 64
forces between, 52
forest hardening, 206
geometrically necessary, 206
glide, 21, 25, 44, 48, 67, 101, 159
glissile, 53
jogs, 22, 206
kinks, 53
line tension, 49, 64
line vector, 46
mixed, 47
mobility, 29, 117, 193
partial, 48, 55
perfect, 48, 55
screw, 44, 47
Index

dislocation (cont.)
sessile, 53
spacing between, 52
strain field, 52
tangles, 22, 29, 118, 206
dispersion strengthening, 63, 66
placement control, 163
displacement measurement, 87
distribution of plastic strain, 153
DoITPoMS, 46, 90, 221
DSC (differential scanning calorimetry), 33
dual phase steels, 116
ductile rupture, 239
ductility, 29, 61, 92
dummy suffix, 10
earing, 101
easy glide, 99
eddy current gauges, 88, 108
EDM (electro-discharge machining), 82
eigenvalues, 11
einstein summation convention, 10, 17
elastic constants, 17
elastic strain energy, 24
electro-magnetic induction, 143
electron beam melting, 86
electron microscopes, 85
elongation at failure, 92, 98
eering shear strain, 18
Euler
Leonard, 231
Euler buckling, 231
Euler buckling stress, 109
explosions, 71, 70
extrusion, 66
face-centred cubic, 46
failure strain, 92
fatigue, 235, 241
high cycle, 236
low cycle, 236
fatigue life, 242
fatigue limit, 242–243
fatigue resistance, 37
fcc, 46, 55, 68, 71
Fe-C martensite, 71
FEM (finite element method), 3, 29–31, 40, 92, 97, 112, 115, 119, 127, 142, 150, 155, 158, 166, 170, 196, 226
inverse, 40, 148
iterative, 173
mesh independence, 160
numerical stability, 160
sensitivity analyses, 159
ferrite, 61, 116
FIB (focused ion beam), 209
fibre composites, 230
fibre push-out, 209
field tensors, 16
first rank tensor, 7
flow stress, 28–29, 134, 144, 152
force balance, 37, 118
forest hardening, 53
forging, 37, 39, 56, 89, 169
four-point bend testing, 226, 258
fracture, 3
critical plastic strain, 166
critical strain, 3
fracture criterion, 93
fracture energy, 3, 238
fracture mechanics, 3, 236
fracture strength, 238
fracture toughness, 3, 82, 88, 193, 240
frame drift, 198
Frank
Charles, 44
Frank’s rule, 49, 55
Frank–Read source, 54, 206
free suffix, 10
Frenkel
Jacov, 44
friction, 108, 110, 116, 119, 159
friction coefficient, 108, 112, 119
friction stir processing, 86
gas gun, 252
gauge length, 81, 85, 88, 92, 107
geometrically necessary dislocations, 206
glassy metals, 201
goodness-of-fit, 164
grain boundaries, 58, 75, 78, 85, 118
grain boundary sliding, 150
grain boundary structure, 139
grain rotations, 140
grain size, 58, 76, 85–86, 139, 142, 150
grain structure, 135, 138
Griffith fracture criterion, 236, 238
grinding, 86
grips, 81
Hounsfield, 83
pinned, 82
serrated, 82
split-collar, 82
threaded, 82
growth twins, 70
Guinier–Preston zones, 64
Hadfield’s manganese steel, 116
hardness testing, 2, 58, 85, 87, 118, 123–125, 204
Brinell, 125
conversion between hardness numbers, 131
effect of residual stresses, 140
from load–displacement data, 203
Knoop, 137
Leeb, 143
Mohs, 144
Rockwell, 129, 140
Vickers, 129, 131
HCF (high cycle fatigue), 236
hcp, 71
heat treatment, 29, 65
heating from plastic deformation, 101
high cycle fatigue, 236
high strain rate tensile testing, 101, 245
high strain rates, 143
high-speed photography, 252
Hirsch
Peter, 44
homologous temperatures, 35
Hooke
Robert, 262
Hooke’s law, 17
Hopkinson bar tests, 247
hot working, 58, 61
HY-100 steel, 93
hydraulic systems, 87
hydrostatic line, 23, 26
hysteresis, 33, 72
impact events, 69, 247
indent profiles, 140, 155, 158, 161
indentation, 1
cryogenic, 198
depth-sensing, 138, 192
in vacuum, 199
pop-in, 205
size effect, 193
indentation creep
pile-up, 177
use of a recess, 173
indentation creep plastometry, 103, 173
indentation plastometry, 2, 85, 97, 115, 118, 124, 127, 140, 149, 194, 212, 228, 250
commercialization, 179
curved surfaces, 156
de edge effects, 157
friction, 160
inclined surfaces, 157
sample preparation, 154
indentation superelastic plastometry, 178
indenter shapes, 124
self-similar, 124
indenters
area function, 125, 202
Berkovich, 137, 141, 196
damage, 137, 196
Knoop, 141
oxidation, 196
sharp, 125, 136, 196
spherical, 149
Vickers, 196
inhomogeneity, 167
Instron Corporation, 129
interfacial energies, 65
interfacial sliding, 162
interferometric optical set-ups, 88
internal oxidation, 61
interstitial
carbon, 61
nitrogen, 61
oxygen, 61
interstitial solute, 60
intrusion–extrusion mechanism, 242
invariants, 12
inverse FEM, 97, 148
ion beam milling, 109
ion implantation, 210
iterative FEM, 119
iterative modeling, 40
jogs, 53
Johnson–Cook law, 31, 39, 244
Knoop
Frederick, 137
Knoop test, 137
laser cutting, 82
laser peening, 242
lattice friction stress, 45, 59
lattice vector, 48
LCF (low cycle fatigue), 236
lead screws, 87
Leeb test, 143
lenticular, 70
linear work hardening, 27
load capability, 85
load cell, 87
load drop, 98
load–displacement plot, 179
loading frame, 87
loading rate, 5
loading train, 87, 158
low cycle fatigue, 236
lubrication, 107, 108, 110, 117, 119, 136, 161
Lüders bands, 62, 98
Ludwigson equation, 159
Ludwik–Hollomon equation, 29, 31, 62, 90, 157,
159
LVDT (linear variable displacement transducers), 88, 108
machining, 31
Mangalloy, 116, 128
maraging steel, 163
Martens
Adolf, 71
martensitic transformations, 71, 73, 74, 99
Index

- matter tensors, 17
- maximum stress criterion, 230
- Maxwell
 - James Clerk, 24
 - mechanical “backlash”, 129
 - mechanical twins, 67
 - meso-scale, 150
- metal forming, 56
- metal matrix composites, 5
- metallic foams, 6
- metastable precipitates, 65
- micrographs, 65
- micropillar compression, 109, 193, 208
- microstructure, 2, 43, 59, 77, 85, 116, 193, 242
- microstructure, 77
- mild steel, 61, 98–99
- Miller indices, 23, 46, 51
- Miller–Norton law, 35, 174
- misfit strains, 37, 40
- misorientation angles, 57
- MMC (metal matrix composites), 5, 169
- Mohr
 - Christian Otto, 12
 - Mohr’s circle, 12, 25, 248, 264
- Mohns
 - Friedrich, 123, 145
 - Mohs hardness scale, 144
- moment balance, 37
- MoSi₂, 108
- multiple slip, 58
- Nabarro–Herring creep, 76
- nanoindentation, 2, 135, 168, 192
- nanoindentations, 148, 152
- size effect, 204
- necking, vii, 30, 89, 116, 151, 159, 238
- Nelder–Mead convergence algorithm, 183
- Nelder–Mead simplex search, 164
- Neumann bands, 69
- neutral axis, 256
- Ni, 173
- Ni-base superalloy, 139, 210
- nitriding, 242
- non-metallic inclusions, 242
- normal stress, 8
- octahedral interstice, 60
- Orowan
 - Egon, 44, 63
 - Orowan bowing, 63
 - Orowan stress, 64
- over-ageing, 66
- oxidation of diamond, 137
- oxide films, 119, 130, 136, 150, 154, 207
- oxygen in copper, 162
- oxygen-free high conductivity Cu, 61
- parallel plate capacitors, 88
- Paris–Erdogan law, 241
- Pb, 119
- Peierls stress, 45, 59, 139
- penetration ratio, 129, 151
- persistent slip bands, 67, 99, 139, 212
- phase
 - austenitic, 33
 - martensitic, 33
 - phase diagram
 - Al-Cu, 64
 - phase transformations, 115, 207
 - martensitic, 32
- pile-ups, 118, 125, 132, 153, 162, 202
- pin-jointed ends, 232
- pinning, 61
- pipeline, 156
- plane strain, 240
- plane stress, 26
- plastic buckling, 232
- plastic strain distribution, 153
- plastic work distribution in strain level, 185
- platens, 108, 119
- Poisson ratio, 4, 18, 162, 202
- Polanyi
 - Michael, 44
 - polar second moment of area, 223
- polishing, 86
- polycrystals, 21, 58
- polygonization, 56
- polymers, 242
- polytope, 165
- pop-in, 206
- porosity, 5
- porous materials, 115
- Portevin–Le Chatelier effect, 62, 98
- precipitates, 59, 64, 77, 138, 201
- precipitation hardening, 63, 66
- pre-load, 130
- premature fracture, 84
- primary creep, 34
- primary slip system, 50, 211
- principal strains, 16, 95
- principal stresses, 11
- profilometers, 181
- profilometry, 158
- projected contact area, 204
- pure shear, 248
- quasi-static, 82
- quenching, 64
- RA (reduction of area), 89, 93–94
- R₀ value, 155
- radiation, 29
- radius of gyration, 232

© in this web service Cambridge University Press

www.cambridge.org
Ramberg–Osgood equation, 159
rate of twist, 262
Read
Thornton, 44
rebound hardness, 142
recovery, 56
recrystallization, 36, 39, 57, 61, 77
reduced modulus, 202
reduced section length, 84
reduced sum of squares, 164
replica technique, 158
representative volume, 85, 126, 135, 150, 204
residual stresses, 36, 59, 117, 140, 169, 242
equal biaxial, 140
resolved shear stress, 50
rigid body rotation, 14
ring compression test, 119
Rockwell
Hugh, 129
Stanley, 129
Rockwell hardness test, 129, 134
rolling, 37, 39, 56, 89
R_p value, 155
sample size, 82, 85, 109
sapphire, 195
scalars, 7
scanning laser extensometry, 88, 108
Schmid factor, 50, 58, 211
Schmid's law, 50
Schmidt hammer test, 142
scratch testing, 144
screw dislocation, 47
second moment of area, 220, 254
circular section, 254
rectangular section, 254
second rank tensors, 7, 11
secondary creep, 34
secular equation, 12
serrations, 61, 98
servo-hydraulic valves, 87
shape memory alloys, 32, 116
shear bands, 66
shear modulus, 18, 20, 44, 262
shear stress, 8
resolved, 50
shock waves, 32
shore test, 143
shot peening, 37, 242
shoulders, 82
SHPB (split Hopkinson pressure bar), 101, 247
simple cubic structure, 45
simplex, 165
single crystal, 50, 138, 150, 168, 193
single crystals, 29, 44, 58, 76, 82, 99–100, 109, 117, 209
single crystals, 62
sink-in, 125, 132, 162
size effects, 136, 203, 204
slenderness ratio, 232
slip plane, 46, 48
slip system, 46
primary, 50
slip systems, 21
SME (shape memory effects), 32, 33, 73
solid solubility, 59
solute atoms, 59
interstitial, 60
substitutional, 59
solution strengthening, 59
solution treatment, 64
speckles, 88
spherical indenters, 137
springs, 224, 261
stable necking, 92
stacking fault, 55
stacking fault energy, 55
stacking sequence, 71
stainless steel, 31, 233
steels, 61, 69
AISI-1018, 249
AISI-4340, 249
dual phase, 116
duplex stainless, 127
hadfield's manganese, 116
maraging, 248
mild, 61
SPFH590, 246
SS400, 246
stainless, 51
TRIP, 99, 116
X-80, 118
08PS, 99
sticking friction, 108, 119
stiffness tensor, 17
strain energy release rate, 237
strain gauge rosettes, 248, 264
strain hardening, 21
strain rate dependence of plasticity, 243
strain rate sensitivity, 32, 39, 144
strains, 2, 7
average plastic, 129
deviatoric, 16
hydrostatic, 16, 60
measurement, 84
nominal, 88
principal, 95, 248
von Mises, 23, 95, 128, 159
stress concentration, 238
stress exponent, 36, 75, 173, 203
stress intensity factor, 240
Index

stress ratio, 241
stress space, 23, 26
stresses, 2, 7
bowing, 64
concentration, 81
contact, 225
deviatoric, 22, 44, 115
engineering, 27
exponent, 78
flow, 28, 134
hydrostatic, 19, 22, 115, 159
lattice friction, 45
nominal, 27, 88
normal, 8
Orowan, 64
Pearl, 45, 139
principal, 11
relaxation, 73
residual, 36, 169
saturation, 29
shear, 8, 23, 44
threshold, 241
tension, 27
ultimate tensile, 91
von Mises, 22, 115, 124, 134, 159, 251
stress-life fatigue testing, 241
stretcher strains, 98
sub-critical crack growth, 236, 239
sub-grain boundaries, 56
sub-grains, 56
substitutional solute, 59
superelasticity, 32, 72
saturated solid solution, 64
surface roughness, 119, 130, 136, 143, 150, 154, 201, 228
swaging, 251
symmetry, 17
Tabor
David, 123
Taylor
Geoffrey, 44
taylor cylinder test, 249
taylor factor, 58
temperature, 5
homologous, 56
tensile drawing of polymers, 92
tensile testing, 1, 50, 81
tension-compression asymmetry, 100, 107, 115, 116, 159
tension-torsion tests, 230
torsional shear strain, 18
tensors, 2
anti-symmetrical, 14
compliance, 17
def ormation, 14
field, 16
first rank, 7
matter, 17
relative displacement, 14
rotation, 15
second rank, 7
stiffness, 17
strain, 14
symmetrical, 14
zeroth rank, 7
testing standards, 81
texture, 58, 85, 101, 117, 139, 150, 152, 168
thermal activation, 56
thermal drift, 194, 198, 204
thin sheet, 82, 85
three-point bending, 257
tilt boundary, 56
tin cry, 69
torque, 221
torsion, 221, 261
torsion testing, 228
torsional coils, 224
torsional split Hopkinson bar, 248
toughness, 195
transformation of axes, 9
transformation-induced plasticity, 99, 116
transformations
martensitic, 115
Tresca, 172
Henri, 25
Tresca yield criterion, 25, 100
true stress, 27
Tsai–Hill criterion, 230
tungsten carbide, 130
twins boundaries, 68
twining, 21
def ormation, 21
direction, 67
elements, 67
plane, 67
shear, 67
twist boundary, 57
twisting moment, 221
ultimate tensile stress, 3–4
uniqueness, 149
unit cell, 4, 46
untextured, 58
UTS (ultimate tensile stress), 3, 86, 92, 97, 116, 126, 151
vacancy, 55
vector, 7, 9
very soft materials, 156
Vickers equivalent cone, 133
Vickers hardness, 152, 192
values, 132
Index

Vickers testing machine, 131
Voce equation, 29, 31, 62, 93–94, 159
von Mises
 Richard Edler, 24
von Mises strain, 95
von Mises stress, 22
von Mises yield criterion, 101

Wade
 William, 123
water jet cutting, 82
welding, 40
wood, 232
work hardened layer, 156
work hardening, 3, 21, 89, 132, 143, 151, 162, 238
 linear, 27
work hardening coefficient, 27, 29
work hardening exponent, 29
work hardening rate, 28, 56, 116
worm drives, 87
wrinkling, 232

yield envelope, 23, 26
yield point, 58
yield stress, 3–4, 22, 140, 143
yielding criteria
 Tresca, 25
 von Mises, 24, 172
Young’s modulus, 4, 17, 88, 138, 162, 168,
 201–202, 220, 232, 263
π-plane, 26