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“A broad coverage of more advanced topics, rich set of exercises, and thorough index make this

stylish book an excellent choice for a second course in linear algebra.”

Nick Higham, University of Manchester

“This textbook thoroughly covers all the material you’d expect in a Linear Algebra course

plus modern methods and applications. These include topics like the Fourier transform, eigen-

value adjustments, stochastic matrices, interlacing, power method and more. With 20 chapters

of such material, this text would be great for a multi-part course and a reference book that all

mathematicians should have.”

Deanna Needell, University of California, Los Angeles

“The original edition of Garcia and Horn’s Second Course in Linear Algebra was well-written,

well-organized, and contained several interesting topics that students should see – but rarely do

in first-semester linear algebra – such as the singular value decomposition, Gershgorin circles,

Cauchy’s interlacing theorem, and Sylvester’s inertia theorem. This new edition also has all of this,

together with useful new material on matrix norms. Any student with the opportunity to take a

second course on linear algebra would be lucky to have this book.”

Craig Larson, Virginia Commonwealth University

“An extremely versatile Linear Algebra textbook that allows numerous combinations of topics for

a traditional course or a more modern and applications-oriented class. Each chapter contains the

exact amount of information, presented in a very easy-to-read style, and a plethora of interesting

exercises to help the students deepen their knowledge and understanding of the material.”

Maria Isabel Bueno Cachadina, University of California, Santa Barbara

“This is an excellent textbook. The topics flow nicely from one chapter to the next and the expla-

nations are very clearly presented. The material can be used for a good second course in Linear

Algebra by appropriately choosing the chapters to use. Several options are possible. The breadth

of subjects presented makes this book a valuable resource.”

Daniel B. Szyld, Temple University and President of the International Linear Algebra Society

“With a careful selection of topics and a deft balance between theory and applications, the authors

have created a perfect textbook for a second course on Linear Algebra. The exposition is clear and

lively. Rigorous proofs are supplemented by a rich variety of examples, figures, and problems.”

Rajendra Bhatia, Ashoka University

“The authors have provided a contemporary, methodical, and clear approach to a broad and com-

prehensive collection of core topics in matrix theory. They include a wealth of illustrative examples

and accompanying exercises to re-enforce the concepts in each chapter. One unique aspect of this

book is the inclusion of a large number of concepts that arise in many interesting applications that

do not typically appear in other books. I expect this text will be a compelling reference for active

researchers and instructors in this subject area.”

Shaun Fallat, University of Regina

“It starts from scratch, but manages to cover an amazing variety of topics, of which quite a few

cannot be found in standard textbooks. All matrices in the book are over complex numbers, and

the connections to physics, statistics, and engineering are regularly highlighted. Compared with

the first edition, two new chapters and 300 new problems have been added, as well as many new

conceptual examples. Altogether, this is a truly impressive book.”

Claus Scheiderer, University of Konstanz
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Preface for the Second Edition

New to this Edition

This is the second edition of A Second Course in Linear Algebra. The new title reflects an

approach to advanced linear algebra that emphasizes matrix factorizations and algorithms.

The second edition includes:

• New chapters on Matrix Norms and Positive Matrices.

• Revisions that incorporate classroom experience with students.

• New sections on Interpolation, Orthogonal polynomials, Gaussian quadrature, LU fac-

torization, unitary equivalence and bidiagonal matrices, induced matrix norms, iterative

algorithms such as the power and point Jacobi methods, and Perron-Frobenius theory.

• Color-enhanced figures.

• More than 300 new problems and many new conceptual and numerical examples.

• A comprehensive solution manual available to instructors.

Target Readership

Matrix mathematics and linear algebra are increasingly relevant in a world focused on the

acquisition and analysis of data. Consequently, this book is intended for students of pure

and applied mathematics, computer science, economics, engineering, mathematical biology,

operations research, physics, and statistics. We assume that the reader has completed a lower-

division calculus sequence and a first course in linear algebra. Analysis is not a prerequisite

for this book.

Key Features of the Book

• Block matrices are employed systematically.

• Matrix factorizations and unitary transformations are emphasized.

• More than 350 examples illustrate concepts introduced in the text.
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xiv Preface for the Second Edition

• Topics for a one-semester course can be selected in many ways to match the needs and

interests of the class.

• Reviews of complex numbers, polynomials, and basic linear algebra are included.

• More than 90 figures illustrate the geometric foundations of linear algebra.

• Special topics include polynomial interpolation, orthogonal polynomials, Gaussian quadra-

ture, matrix norms, Perron–Frobenius theory, and the Google matrix.

• Every chapter includes problems, more than 900 in total.

• Notes at the end of chapters provide sources of additional information.

• Each chapter ends with a bullet list of important concepts.

• Symbols used in the book are listed in a table of notation, with page references.

• A comprehensive index helps readers locate concepts and definitions. More than 2,000

entries enhance the value of the book as a reference.

• Concise, direct presentation and language level are suitable for an international audience.

Coverage of the Book

Matrices and vector spaces in this book are over the complex field. The use of complex scalars

is essential to the study of eigenvalues, even for real matrices, and is consistent with modern

numerical linear algebra software. Moreover, it is aligned with applications in physics (com-

plex wave functions and Hermitian matrices in quantum mechanics), electrical engineering

(analysis of circuits and signals in which both phase and amplitude are important), statis-

tics (time series and characteristic functions), and computer science (fast Fourier transforms,

convergent matrices in iterative algorithms, and quantum computing).

While studying linear algebra with this book, students can observe and practice good mathe-

matical communication skills. These skills include how to state (and read) a theorem carefully;

how to choose (and use) hypotheses; how to prove a statement by induction, by contradiction,

or by contraposition; how to improve a theorem by weakening its hypotheses or strengthening

its conclusions; how to use counterexamples; and how to write a cogent solution to a problem.

The following topics in the book are useful in applications of linear algebra, but fall outside

the realm of linear transformations and similarity, so they may be absent from textbooks that

adopt an abstract operator approach:

• Gershgorin’s disk theorem on eigenvalue location

• The pivot-column decomposition and full-rank factorizations

• Commutants and trace-zero matrices (Shoda’s theorem)

• QR, bidiagonal, triangular, and Cholesky factorizations

• Discrete Fourier transforms

• Circulant matrices

• Eigenvalue adjustments and the Google matrix

• Nonnegative matrices (Markov matrices) and positive matrices (Perron’s theorem)
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Preface for the Second Edition xv

• The singular value and compact singular value decompositions

• Low-rank approximations to a data matrix

• Generalized inverses (Moore–Penrose inverses)

• Positive semidefinite matrices

• Schur complements

• Hadamard (entrywise) and Kronecker (tensor) products

• The Schur product theorem

• Matrix norms and the spectral radius

• Error bounds for eigenvalue computations (Bauer–Fike theorem)

• Convergent matrices, power-bounded matrices, and iterative algorithms

• Least-squares and minimum-norm solutions

• Complex symmetric matrices

• Inertia of normal matrices

• Eigenvalue and singular-value interlacing

• Inequalities among eigenvalues, singular values, and diagonal entries

Structure of the Book

A comprehensive list of symbols and notation (with page references) follows the Preface.

Chapter 1 reviews complex and real vector spaces, with numerous examples. The essential

concepts of linear independence, linear dependence, and spanning lists are introduced, and the

book’s first matrix factorization emerges: the pivot-column decomposition.

Chapter 2 focuses on bases, dimension, and change-of-basis matrices. Matrix similarity

arises as the relation between the representations of a linear transformation with respect to two

bases. Lagrange interpolation provides examples of bases in vector spaces of polynomials.

We observe instability with interpolation at equally spaced nodes and better behavior with

interpolation at Chebyshev nodes. Integration of a polynomial interpolation leads to Simpson’s

rule and other Newton–Cotes quadrature formulae.

The block-matrix paradigm used throughout the book is introduced in Chapter 3. Block-

matrix notation is useful in thinking about and communicating mathematical concepts. It

focuses attention on the main ideas, instead of a quagmire of symbols and subscripts. Block

matrices are central to the logic and coding of modern numerical algorithms. Row and column

partitions are essential to the representation of a matrix product as the sum of outer products.

Block Gaussian elimination leads to the Schur complement and determinant formulae for

bordered matrices. Kronecker (tensor) products are a special topic at the end of this chapter.

Rank is the core concept in Chapter 4, which begins with the rank-nullity theorem and

the subspace-intersection theorem. Block-matrix methods and full-rank factorizations are em-

ployed to present the basic rank inequalities for matrix sums and products. We present an

algorithm to obtain LU factorizations that makes use of the outer-product representation for

a matrix product. Shoda’s theorem about matrix commutators and trace-zero matrices is a

special topic in the final section.
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xvi Preface for the Second Edition

Chapters 5 and 6 review geometry in the Euclidean plane and use it to motivate ax-

ioms for inner product spaces and normed linear spaces. Topics include orthogonal vectors,

orthogonal projections, orthonormal bases, orthogonalization, the Riesz representation theo-

rem, adjoints, and applications of the theory to Fourier series. Orthogonal polynomials and

Gaussian quadrature are the special topic in Chapter 6.

Chapter 7 introduces unitary matrices, which are used in modern computational algorithms

because they are easy to invert and exhibit superior stability properties in numerical calcula-

tions. In this chapter, we use unitary matrices to construct the QR factorization and a unitary

similarity to upper Hessenberg form.

Chapter 8 discusses orthogonal projections, best approximations, least-squares solutions of

linear systems, and the use of QR factorizations to solve the normal equations.

Chapter 9 introduces eigenvalues, eigenvectors, and geometric multiplicity. We show that

an n × n real or complex matrix has at least one and not more than n distinct eigenvalues, and

use Gershgorin’s disk theorem to identify a region in the complex plane that contains them.

Chapter 10 deals with the characteristic polynomial and algebraic multiplicity. We de-

velop criteria for diagonalizability and define primary matrix functions of a diagonalizable

matrix. Topics include Fibonacci numbers, the eigenvalues of AB and BA, commutants, and

simultaneous diagonalization.

Chapter 11 features Schur’s triangularization theorem and a related result for a commuting

family. Schur’s theorem is used to prove the Cayley–Hamilton theorem: each square matrix

is annihilated by its characteristic polynomial. The latter result motivates introduction of the

minimal polynomial and a study of its properties. We prove Sylvester’s theorem on linear ma-

trix equations and use it to show that every square matrix is similar to a block diagonal matrix

with unispectral diagonal blocks. The special topic in this chapter discusses perturbations of

the Google matrix that facilitate computation of website rankings.

Chapter 12 builds on the preceding chapter to show that every square matrix is similar to a

Jordan matrix that is unique up to permutation of its direct summands.

We discuss several applications of the Jordan canonical form in Chapter 13. They in-

clude systems of linear differential equations, an analysis of the Jordan structures of AB

and BA, convergent and power-bounded matrices, a limit theorem for stochastic matrices that

have positive entries, similarity of a matrix to its transpose, and similarity of a matrix to its

complex conjugate.

Chapter 14 is about normal matrices: matrices that commute with their conjugate transpose.

The spectral theorem says that a matrix is normal if and only if it is unitarily diagonalizable.

Hermitian, skew-Hermitian, unitary, real-orthogonal, real-symmetric, and circulant matrices

are all normal.

Positive semidefinite matrices are the subject of Chapter 15. These matrices arise in statis-

tics (correlation matrices and the normal equations), mechanics (kinetic and potential energy

in a vibrating system), and geometry (ellipsoids). Topics include matrix square roots, si-

multaneous diagonalization of quadratic forms, Cholesky factorization, and Hadamard and

Kronecker products.

The principal result in Chapter 16 is the singular value decomposition, which is at the

heart of many modern numerical algorithms in statistics, control theory, approximation, image

compression, and data analysis. Topics include the compact singular value decomposition and

polar decompositions, with special attention to uniqueness of these factorizations. A special

topic is unitary equivalence of a complex matrix to an upper bidiagonal matrix.
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In Chapter 17, the singular value decomposition is used to compress an image or data ma-

trix. Other applications of the singular value decomposition discussed are the generalized

inverse (Moore–Penrose inverse) of a matrix; inequalities between singular values and eigen-

values; the spectral norm of a matrix; perturbation bounds for linear systems and eigenvalue

problems; and canonical forms for matrices that are complex symmetric or idempotent.

Chapter 18 investigates eigenvalue interlacing phenomena for Hermitian matrices that are

bordered or are subjected to an additive perturbation. Related results include an interlacing

theorem for singular values, a determinant criterion for positive definiteness, and inequalities

that link the eigenvalues and diagonal entries of a Hermitian matrix. We prove Sylvester’s

inertia theorem for Hermitian matrices and a generalized inertia theorem for normal matrices.

Norms and matrix norms are the topics in Chapter 19. Eight examples of matrix norms

are presented, with a systematic account of inequalities between pairs of them. Many itera-

tive algorithms require that a particular matrix has spectral radius less than 1, which would

be the case if some matrix norm of that matrix is less than 1. We analyze two iterative al-

gorithms: the point Jacobi method to solve a linear system and the power method to find a

dominant eigenpair. Facts about matrix norms are used to prove Gelfand’s formula for the

spectral radius.

Chapter 20 is devoted to Perron’s theorem about the dominant eigenpair and limits of pow-

ers of a real square matrix with positive entries. This result has been used in diverse fields

such as economic modeling, team ranking, population dynamics, genetics, and city planning.

We prove it using facts about matrix norms and the Jordan canonical form.

Four short appendices review notation and concepts for complex numbers, polynomials,

basic linear algebra, and mathematical induction. The appendices are provided for reference,

and readers can consult them as needed.

The appendices are followed by a short list of references and an extensive index.
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Notation

∈, /∈ is / is not an element of

⊆ is a subset of

∅ the empty set

∪ union

∩ intersection

× Cartesian product

f : X → Y f is a function from X into Y

=⇒ implies

⇐= is implied by

⇐⇒ if and only if

≈ approximately equal

x 
→ y implicit definition of a function that maps x to y

N = {1, 2, 3, . . .} the set of natural numbers

Z = {. . . , −2, −1, 0, 1, 2, . . .} the set of integers

R the set of real numbers

C the set of complex numbers

F field of scalars (F = R or C)

Re z real part of the complex number z (p. 417)

Im z imaginary part of the complex number z (p. 417)

|z| modulus of the complex number z (p. 420)

arg z argument of the complex number z (p. 420)

[a, b] a real interval that includes its endpoints a, b

U ,V ,W vector spaces

U , V , W subsets of vector spaces

a, b, c, . . . scalars

a, b, c, . . . (column) vectors

A, B, C, . . . matrices

Mm×n(F) the set of m × n matrices with entries in F

Mn(F) the set of n × n matrices with entries in F

Mm×n the set of m × n matrices with entries in C

Mn the set of n × n matrices with entries in C

∼= an equivalence relation (p. 51)

deg p degree of a polynomial p (p. 428)

δij Kronecker delta (p. 434)

(x)i ith entry of a vector x (p. 439)

In n × n identity matrix (p. 434)
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List of Notation xix

I identity matrix (size inferred from context) (p. 434)

diag(x1, x2, . . . , xn) diagonal matrix with diagonal entries x1, x2, . . . , xn

(p. 435)

A0 = I convention for zeroth power of a matrix (p. 437)

AT transpose of A (p. 437)

A−T inverse of AT (p. 437)

A conjugate of A (p. 437)

A∗ conjugate transpose (adjoint) of A (p. 437)

A−∗ inverse of A∗ (p. 437)

tr A trace of A (p. 438)

det A determinant of A (p. 441)

adj A adjugate of A (p. 442)

sgn σ sign of a permutation σ (p. 443)

Pn set of complex polynomials of degree at most n (p. 4)

Pn(R) set of real polynomials of degree at most n (p. 4)

P set of all complex polynomials (p. 4)

CF[a, b] set of continuous F-valued functions on [a, b] (p. 4)

C[a, b] set of continuous C-valued functions on [a, b] (p. 4)

null A null space of a matrix A (p. 5)

col A column space of a matrix A (p. 6)

row A row space of a matrix A (p. 6)

Peven set of even complex polynomials (p. 7)

Podd set of odd complex polynomials (p. 7)

AU A acting on a subspace U (p. 6)

span S span of a subset S of a vector space (p. 8)

e all-ones vector (p. 10)

U ∩ W intersection of subspaces U and W (p. 11)

U + W sum of subspaces U and W (p. 12)

U ⊕ W direct sum of subspaces U and W (p. 12)

v1, v2, . . . , v̂j, . . . , vr list of vectors with vj omitted (p. 17)

e1, e2, . . . , en standard basis for Fn (p. 28)

Eij matrix with (i, j) entry 1 and all others 0 (p. 28)

dimV dimension of V (p. 28)

[v]β coordinate vector of v with respect to a basis β

(p. 33)

L(V ,W) set of linear transformations from V to W (p. 35)

L(V) set of linear transformations from V to itself (p. 35)

ker T kernel of T (p. 36)

ran T range of T (p. 36)

I identity linear transformation (p. 38)

rank A rank of a matrix A (p. 31)

nullity A nullity of a matrix A (p. 74)

⋆ unspecified matrix entry (p. 63)

A ⊕ B direct sum of matrices A and B (p. 64)

A ⊗ B Kronecker product of matrices A and B (p. 68)

vec A vector of stacked columns of a matrix A (p. 69)
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xx List of Notation

[A, B] commutator of matrices A and B (p. 85)

〈x, y〉 inner product of vectors x and y (p. 98)

〈A, B〉F Frobenius inner product of matrices A and B (p. 99)

⊥ orthogonal (p. 100)

‖x‖ norm of a vector x (p. 101)

‖x‖2 Euclidean norm of a vector x (p. 101)

‖A‖F Frobenius norm of a matrix A (p. 101)

‖x‖1 ℓ1 norm (absolute sum norm) of a vector x (p. 106)

‖x‖∞ ℓ∞ norm (max norm) of a vector x (p. 106)

γ [T]β matrix representation of T ∈ L(V ,W) with respect

to bases β and γ (p. 118)

f (x+) one-sided limit from the right (p. 126)

f (x−) one-sided limit from the left (p. 126)

Pv projection onto a unit vector v (p. 138)

Fn n × n Fourier matrix (p. 140)

U ⊥ orthogonal complement of a set U (p. 158)

PU orthogonal projection onto a subspace U (p. 163)

d(v,U ) distance from v to U (p. 167)

G(u1, u2, . . . , un) Gram matrix (p. 170)

g(u1, u2, . . . , un) Gram determinant (p. 170)

spec A spectrum of A (p. 186)

Eλ(A) eigenspace of A for eigenvalue λ (p. 189)

Gk(A) kth Gershgorin disk of A (p. 190)

G (A) Gershgorin region of A (p. 190)

R′
k(A) kth deleted absolute row sum of A (p. 190)

Rk(A) kth absolute row sum of A (p. 190)

pA(z) characteristic polynomial of A (p. 202)

F ′ commutant of a set of matrices F (p. 213)

eA matrix exponential of A (p. 213)

mA(z) minimal polynomial of A (p. 226)

Cp companion matrix of the polynomial p (p. 227)

Jk(λ) k × k Jordan block with eigenvalue λ (p. 241)

Jk k × k nilpotent Jordan block (p. 241)

w1, w1, . . . , wq Weyr characteristic of a matrix (p. 248)

ρ(A) spectral radius of A (p. 259)

Gλ(A) generalized eigenspace of A for eigenvalue λ (p. 253)


(A) defect from normality of A (p. 282)

Hn n × n Hartley matrix (p. 286)

Rn real part of Fn (p. 286)

Tn imaginary part of Fn (p. 286)

A ◦ B Hadamard product of A and B (p. 315)

A • B Jordan product of A and B (p. 320)

σmax(A) maximum singular value (p. 346)

‖A‖2 spectral norm of a matrix A (p. 347)

σmin(A) minimum singular value (p. 350)

σ1(A), σ2(A), . . . singular values of A (p. 350)
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List of Notation xxi

A† pseudoinverse of A (p. 353)

κ2(A) spectral condition number of A (p. 358)

W (A) numerical range of A (p. 384)

‖x‖[k] k-norm of a vector x (p. 391)

‖x‖S ‖Sx‖, in which S is invertible (p. 391)

‖A‖1 ℓ1 norm of a matrix A (p. 391)

‖A‖∞ max norm of a matrix A (p. 392)

Nn-max(A) n-max norm of a matrix A (p. 392)

Ncol max(A) column max norm of a matrix A (p. 392)

NS(A) ‖SAS−1‖ (p. 393)

N1(A) maximum absolute column-sum norm (p. 394)

N∞(A) maximum absolute row-sum norm (p. 395)

A(k) k × k leading principal submatrix of A (p. 436)

Sn nth statement in an induction (p. 447)

|A| modulus of A (p. 334)

|A| A = [aij] =⇒ |A| = [|aij|] (Chapter 20 only)

|x| x = [xi] =⇒ |x| = [|xi|] (Chapter 20 only)
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