Matrix Mathematics

Using a modern matrix-based approach, this rigorous second course in linear algebra helps upper-level undergraduates in mathematics, data science, and the physical sciences transition from basic theory to advanced topics and applications. Its clarity of exposition together with many illustrations, 900+ exercises, and 350 conceptual and numerical examples aid the student’s understanding. Concise chapters promote a focused progression through essential ideas. Topics are derived and discussed in detail, including the singular value decomposition, Jordan canonical form, spectral theorem, QR factorization, normal matrices, Hermitian matrices, and positive definite matrices. Each chapter ends with a bullet list summarizing important concepts. New to this edition are chapters on matrix norms and positive matrices, many new sections on topics including interpolation and LU factorization, 300+ additional problems, many new examples, and color-enhanced figures. Prerequisites include a first course in linear algebra and basic calculus sequence. Instructor resources are available.

Stephan Ramon Garcia is W. M. Keck Distinguished Service Professor and Chair of the Department of Mathematics and Statistics at Pomona College. He is the author of five books and over 100 research articles in operator theory, complex analysis, matrix analysis, number theory, discrete geometry, and combinatorics. He has served on the editorial boards of the Proceedings of the American Mathematical Society, Notices of the American Mathematical Society, Involve, and The American Mathematical Monthly. He received six teaching awards from three different institutions and is a fellow of the American Mathematical Society, which has awarded him the inaugural Dolciani Prize for Excellence in Research.

Roger A. Horn was Professor and Chair of the Department of Mathematical Sciences at the Johns Hopkins University and then Research Professor of Mathematics at the University of Utah until his retirement in 2015. His publications include Matrix Analysis (2nd edition, Cambridge, 2012) and Topics in Matrix Analysis (both written with Charles R. Johnson, Cambridge, 1991), as well as more than 100 research articles in matrix analysis, statistics, health services research, complex variables, probability, differential geometry, and analytic number theory. He was the editor of The American Mathematical Monthly and has served on the editorial boards of the SIAM Journal of Matrix Analysis, Linear Algebra and Its Applications, and the Electronic Journal of Linear Algebra.
CAMBRIDGE MATHEMATICAL TEXTBOOKS

Cambridge Mathematical Textbooks is a program of undergraduate and beginning graduate-level textbooks for core courses, new courses, and interdisciplinary courses in pure and applied mathematics. These texts provide motivation with plenty of exercises of varying difficulty, interesting examples, modern applications, and unique approaches to the material.

Advisory Board
Paul T. Allen, Lewis & Clark College
Melody Chan, Brown University
Teena Gerhardt, Michigan State University
Illya Hicks, Rice University
Greg Lawler, University of Chicago
John M. Lee, University of Washington
Lawrence Washington, University of Maryland, College Park
Talithia Williams, Harvey Mudd College

A complete list of books in the series can be found at www.cambridge.org/mathematics

Recent titles include books the following:
Chance, Strategy, and Choice: An Introduction to the Mathematics of Games and Elections, S. B. Smith
Set Theory: A First Course, D. W. Cunningham
Chaotic Dynamics: Fractals, Tilings, and Substitutions, G. R. Goodson
A Second Course in Linear Algebra, S. R. Garcia & R. A. Horn
Introduction to Experimental Mathematics, S. Eilers & R. Johansen
Exploring Mathematics: An Engaging Introduction to Proof, J. Meier & D. Smith
A First Course in Analysis, J. B. Conway
Introduction to Probability, D. F. Anderson, T. Seppäläinen & B. Valkó
Linear Algebra, E. S. Meckes & M. W. Meckes
A Short Course in Differential Topology, B. I. Dundas
Abstract Algebra with Applications, A. Terras
Complex Analysis, D. E. Marshall
An Invitation to Combinatorics, S. Shahriari
Modern Mathematical Logic, Joseph Mileti
To our families:

Gizem, Reyhan, and Altay
Susan;
Craig, Cori, Cole, and Carson;
Howard, Heidi, Archer, and Ella Ceres
“A broad coverage of more advanced topics, rich set of exercises, and thorough index make this stylish book an excellent choice for a second course in linear algebra.”

Nick Higham, University of Manchester

“This textbook thoroughly covers all the material you’d expect in a Linear Algebra course plus modern methods and applications. These include topics like the Fourier transform, eigenvalue adjustments, stochastic matrices, interlacing, power method and more. With 20 chapters of such material, this text would be great for a multi-part course and a reference book that all mathematicians should have.”

Deanna Needell, University of California, Los Angeles

“The original edition of Garcia and Horn’s Second Course in Linear Algebra was well-written, well-organized, and contained several interesting topics that students should see – but rarely do in first-semester linear algebra – such as the singular value decomposition, Gershgorin circles, Cauchy’s interlacing theorem, and Sylvester’s inertia theorem. This new edition also has all of this, together with useful new material on matrix norms. Any student with the opportunity to take a second course on linear algebra would be lucky to have this book.”

Craig Larson, Virginia Commonwealth University

“An extremely versatile Linear Algebra textbook that allows numerous combinations of topics for a traditional course or a more modern and applications-oriented class. Each chapter contains the exact amount of information, presented in a very easy-to-read style, and a plethora of interesting exercises to help the students deepen their knowledge and understanding of the material.”

Maria Isabel Bueno Cachadina, University of California, Santa Barbara

“This is an excellent textbook. The topics flow nicely from one chapter to the next and the explanations are very clearly presented. The material can be used for a good second course in Linear Algebra by appropriately choosing the chapters to use. Several options are possible. The breadth of subjects presented makes this book a valuable resource.”

Daniel B. Szyld, Temple University and President of the International Linear Algebra Society

“With a careful selection of topics and a deft balance between theory and applications, the authors have created a perfect textbook for a second course on Linear Algebra. The exposition is clear and lively. Rigorous proofs are supplemented by a rich variety of examples, figures, and problems.”

Rajendra Bhatia, Ashoka University

“The authors have provided a contemporary, methodical, and clear approach to a broad and comprehensive collection of core topics in matrix theory. They include a wealth of illustrative examples and accompanying exercises to re-enforce the concepts in each chapter. One unique aspect of this book is the inclusion of a large number of concepts that arise in many interesting applications that do not typically appear in other books. I expect this text will be a compelling reference for active researchers and instructors in this subject area.”

Shaun Fallat, University of Regina

“It starts from scratch, but manages to cover an amazing variety of topics, of which quite a few cannot be found in standard textbooks. All matrices in the book are over complex numbers, and the connections to physics, statistics, and engineering are regularly highlighted. Compared with the first edition, two new chapters and 300 new problems have been added, as well as many new conceptual examples. Altogether, this is a truly impressive book.”

Claus Scheiderer, University of Konstanz
Contents

Preface for the Second Edition
List of Notation

1 Vector Spaces
1.1 What Is a Vector Space?
1.2 Examples of Vector Spaces
1.3 Subspaces
1.4 Linear Combinations, Lists, and Span
1.5 Intersections, Sums, and Direct Sums of Subspaces
1.6 Linear Dependence and Linear Independence
1.7 The Pivot Column Decomposition
1.8 Problems
1.9 Notes
1.10 Some Important Concepts

2 Bases and Similarity
2.1 What Is a Basis?
2.2 Dimension
2.3 Full-Rank Factorizations
2.4 Coordinate Vectors and Matrix Representations of Linear Transformations
2.5 Change of Basis
2.6 Similarity
2.7 Polynomial Bases and Lagrange Interpolation
2.8 Problems
2.9 Notes
2.10 Some Important Concepts

3 Block Matrices
3.1 Row and Column Partitions
3.2 Block Partitions and Direct Sums
3.3 Determinants of Block Matrices
3.4 Kronecker Products
3.5 Problems
3.6 Notes
3.7 Some Important Concepts

4 Rank, Triangular Factorizations, and Row Equivalence
4.1 The Rank-Nullity Theorem and Subspace Intersection

Please note:
The above content is the structure and page numbers of the contents page of the document. The actual text content is not included in this representation.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Rank</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>LU Factorization</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Row Equivalence</td>
<td>83</td>
</tr>
<tr>
<td>4.5</td>
<td>Commutators and Shoda’s Theorem</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td>Problems</td>
<td>87</td>
</tr>
<tr>
<td>4.7</td>
<td>Notes</td>
<td>92</td>
</tr>
<tr>
<td>4.8</td>
<td>Some Important Concepts</td>
<td>93</td>
</tr>
</tbody>
</table>

5 Inner Products and Norms

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>The Pythagorean Theorem and the Law of Cosines</td>
<td>94</td>
</tr>
<tr>
<td>5.2</td>
<td>Angles and Lengths in the Plane</td>
<td>95</td>
</tr>
<tr>
<td>5.3</td>
<td>Inner Products</td>
<td>98</td>
</tr>
<tr>
<td>5.4</td>
<td>The Norm Derived from an Inner Product</td>
<td>101</td>
</tr>
<tr>
<td>5.5</td>
<td>Normed Vector Spaces</td>
<td>106</td>
</tr>
<tr>
<td>5.6</td>
<td>Problems</td>
<td>107</td>
</tr>
<tr>
<td>5.7</td>
<td>Notes</td>
<td>110</td>
</tr>
<tr>
<td>5.8</td>
<td>Some Important Concepts</td>
<td>110</td>
</tr>
</tbody>
</table>

6 Orthonormal Vectors

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Orthonormal Sequences</td>
<td>111</td>
</tr>
<tr>
<td>6.2</td>
<td>Orthonormal Bases</td>
<td>113</td>
</tr>
<tr>
<td>6.3</td>
<td>The Gram–Schmidt Process</td>
<td>114</td>
</tr>
<tr>
<td>6.4</td>
<td>The Riesz Representation Theorem</td>
<td>117</td>
</tr>
<tr>
<td>6.5</td>
<td>Orthonormal Bases and Linear Transformations</td>
<td>118</td>
</tr>
<tr>
<td>6.6</td>
<td>Adjoints of Linear Transformations and Matrices</td>
<td>119</td>
</tr>
<tr>
<td>6.7</td>
<td>Parseval’s Identity and Bessel’s Inequality</td>
<td>122</td>
</tr>
<tr>
<td>6.8</td>
<td>Fourier Series</td>
<td>124</td>
</tr>
<tr>
<td>6.9</td>
<td>Orthogonal Polynomial Bases and Gaussian Quadrature</td>
<td>128</td>
</tr>
<tr>
<td>6.10</td>
<td>Problems</td>
<td>132</td>
</tr>
<tr>
<td>6.11</td>
<td>Notes</td>
<td>136</td>
</tr>
<tr>
<td>6.12</td>
<td>Some Important Concepts</td>
<td>136</td>
</tr>
</tbody>
</table>

7 Unitary Matrices

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Unitary Matrices</td>
<td>137</td>
</tr>
<tr>
<td>7.2</td>
<td>Change of Orthonormal Basis and Unitary Similarity</td>
<td>143</td>
</tr>
<tr>
<td>7.3</td>
<td>Permutation Matrices</td>
<td>145</td>
</tr>
<tr>
<td>7.4</td>
<td>The QR Factorization</td>
<td>147</td>
</tr>
<tr>
<td>7.5</td>
<td>Upper Hessenberg Matrices</td>
<td>151</td>
</tr>
<tr>
<td>7.6</td>
<td>Problems</td>
<td>153</td>
</tr>
<tr>
<td>7.7</td>
<td>Notes</td>
<td>157</td>
</tr>
<tr>
<td>7.8</td>
<td>Some Important Concepts</td>
<td>157</td>
</tr>
</tbody>
</table>

8 Orthogonal Complements and Orthogonal Projections

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Orthogonal Complements</td>
<td>158</td>
</tr>
<tr>
<td>8.2</td>
<td>The Minimum-Norm Solution of a Consistent Linear System</td>
<td>160</td>
</tr>
<tr>
<td>8.3</td>
<td>Orthogonal Projections</td>
<td>163</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Best Approximation</td>
<td>167</td>
</tr>
<tr>
<td>8.5</td>
<td>The Least-Squares Solution of an Inconsistent Linear System</td>
<td>171</td>
</tr>
<tr>
<td>8.6</td>
<td>Invariant Subspaces</td>
<td>174</td>
</tr>
<tr>
<td>8.7</td>
<td>Problems</td>
<td>176</td>
</tr>
<tr>
<td>8.8</td>
<td>Notes</td>
<td>179</td>
</tr>
<tr>
<td>8.9</td>
<td>Some Important Concepts</td>
<td>179</td>
</tr>
<tr>
<td>9</td>
<td>Eigenvalues, Eigenvectors, and Geometric Multiplicity</td>
<td>180</td>
</tr>
<tr>
<td>9.1</td>
<td>Eigenvalue-Eigenvector Pairs</td>
<td>180</td>
</tr>
<tr>
<td>9.2</td>
<td>Every Square Complex Matrix Has an Eigenvalue</td>
<td>184</td>
</tr>
<tr>
<td>9.3</td>
<td>How Many Eigenvalues Are There?</td>
<td>186</td>
</tr>
<tr>
<td>9.4</td>
<td>The Eigenvalues Are in Gershgorin Disks</td>
<td>190</td>
</tr>
<tr>
<td>9.5</td>
<td>Eigenvectors and Commuting Matrices</td>
<td>195</td>
</tr>
<tr>
<td>9.6</td>
<td>Real Similarity of Real Matrices</td>
<td>197</td>
</tr>
<tr>
<td>9.7</td>
<td>Problems</td>
<td>198</td>
</tr>
<tr>
<td>9.8</td>
<td>Notes</td>
<td>201</td>
</tr>
<tr>
<td>9.9</td>
<td>Some Important Concepts</td>
<td>201</td>
</tr>
<tr>
<td>10</td>
<td>The Characteristic Polynomial and Algebraic Multiplicity</td>
<td>202</td>
</tr>
<tr>
<td>10.1</td>
<td>The Characteristic Polynomial</td>
<td>202</td>
</tr>
<tr>
<td>10.2</td>
<td>Algebraic Multiplicity</td>
<td>204</td>
</tr>
<tr>
<td>10.3</td>
<td>Similarity and Eigenvalue Multiplicities</td>
<td>206</td>
</tr>
<tr>
<td>10.4</td>
<td>Diagonalization and Eigenvalue Multiplicities</td>
<td>207</td>
</tr>
<tr>
<td>10.5</td>
<td>The Functional Calculus for Diagonalizable Matrices</td>
<td>211</td>
</tr>
<tr>
<td>10.6</td>
<td>Commutants</td>
<td>213</td>
</tr>
<tr>
<td>10.7</td>
<td>The Eigenvalues of AB and BA</td>
<td>214</td>
</tr>
<tr>
<td>10.8</td>
<td>Problems</td>
<td>216</td>
</tr>
<tr>
<td>10.9</td>
<td>Notes</td>
<td>220</td>
</tr>
<tr>
<td>10.10</td>
<td>Some Important Concepts</td>
<td>220</td>
</tr>
<tr>
<td>11</td>
<td>Unitary Triangularization and Block Diagonalization</td>
<td>221</td>
</tr>
<tr>
<td>11.1</td>
<td>Schur’s Triangularization Theorem</td>
<td>221</td>
</tr>
<tr>
<td>11.2</td>
<td>The Cayley–Hamilton Theorem</td>
<td>223</td>
</tr>
<tr>
<td>11.3</td>
<td>The Minimal Polynomial</td>
<td>225</td>
</tr>
<tr>
<td>11.4</td>
<td>Linear Matrix Equations and Block Diagonalization</td>
<td>228</td>
</tr>
<tr>
<td>11.5</td>
<td>Commuting Matrices and Triangularization</td>
<td>231</td>
</tr>
<tr>
<td>11.6</td>
<td>Eigenvalue Adjustments and the Google Matrix</td>
<td>233</td>
</tr>
<tr>
<td>11.7</td>
<td>Problems</td>
<td>234</td>
</tr>
<tr>
<td>11.8</td>
<td>Notes</td>
<td>237</td>
</tr>
<tr>
<td>11.9</td>
<td>Some Important Concepts</td>
<td>238</td>
</tr>
<tr>
<td>12</td>
<td>The Jordan Form: Existence and Uniqueness</td>
<td>239</td>
</tr>
<tr>
<td>12.1</td>
<td>Ranks of Powers</td>
<td>239</td>
</tr>
<tr>
<td>12.2</td>
<td>Jordan Blocks and Jordan Matrices</td>
<td>240</td>
</tr>
<tr>
<td>12.3</td>
<td>Existence of a Jordan Form</td>
<td>243</td>
</tr>
<tr>
<td>12.4</td>
<td>Uniqueness of a Jordan Form</td>
<td>246</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>The Jordan Canonical Form</td>
<td>250</td>
</tr>
<tr>
<td>12.6</td>
<td>Problems</td>
<td>251</td>
</tr>
<tr>
<td>12.7</td>
<td>Notes</td>
<td>254</td>
</tr>
<tr>
<td>12.8</td>
<td>Some Important Concepts</td>
<td>255</td>
</tr>
<tr>
<td>13</td>
<td>The Jordan Form: Applications</td>
<td>256</td>
</tr>
<tr>
<td>13.1</td>
<td>Differential Equations and the Jordan Canonical Form</td>
<td>256</td>
</tr>
<tr>
<td>13.2</td>
<td>Convergent and Power-Bounded Matrices</td>
<td>258</td>
</tr>
<tr>
<td>13.3</td>
<td>The Jordan Forms of A and A^p</td>
<td>261</td>
</tr>
<tr>
<td>13.4</td>
<td>Stochastic Matrices</td>
<td>262</td>
</tr>
<tr>
<td>13.5</td>
<td>The Invertible Jordan Blocks of AB and BA</td>
<td>267</td>
</tr>
<tr>
<td>13.6</td>
<td>Similarity of a Matrix and Its Transpose</td>
<td>269</td>
</tr>
<tr>
<td>13.7</td>
<td>Similarity of a Matrix and Its Complex Conjugate</td>
<td>270</td>
</tr>
<tr>
<td>13.8</td>
<td>Problems</td>
<td>271</td>
</tr>
<tr>
<td>13.9</td>
<td>Notes</td>
<td>276</td>
</tr>
<tr>
<td>13.10</td>
<td>Some Important Concepts</td>
<td>276</td>
</tr>
<tr>
<td>14</td>
<td>Normal Matrices and the Spectral Theorem</td>
<td>277</td>
</tr>
<tr>
<td>14.1</td>
<td>Normal Matrices</td>
<td>277</td>
</tr>
<tr>
<td>14.2</td>
<td>The Spectral Theorem</td>
<td>279</td>
</tr>
<tr>
<td>14.3</td>
<td>The Defect from Normality</td>
<td>282</td>
</tr>
<tr>
<td>14.4</td>
<td>The Fuglede–Putnam Theorem</td>
<td>283</td>
</tr>
<tr>
<td>14.5</td>
<td>Circulant, Fourier, and Hartley Matrices</td>
<td>284</td>
</tr>
<tr>
<td>14.6</td>
<td>Some Special Classes of Normal Matrices</td>
<td>287</td>
</tr>
<tr>
<td>14.7</td>
<td>Similarity of Normal and Other Diagonalizable Matrices</td>
<td>290</td>
</tr>
<tr>
<td>14.8</td>
<td>Some Characterizations of Normality</td>
<td>291</td>
</tr>
<tr>
<td>14.9</td>
<td>Spectral Resolutions</td>
<td>292</td>
</tr>
<tr>
<td>14.10</td>
<td>Problems</td>
<td>296</td>
</tr>
<tr>
<td>14.11</td>
<td>Notes</td>
<td>300</td>
</tr>
<tr>
<td>14.12</td>
<td>Some Important Concepts</td>
<td>300</td>
</tr>
<tr>
<td>15</td>
<td>Positive Semidefinite Matrices</td>
<td>301</td>
</tr>
<tr>
<td>15.1</td>
<td>Positive Semidefinite Matrices</td>
<td>301</td>
</tr>
<tr>
<td>15.2</td>
<td>Schur Complements and Diagonal Dominance</td>
<td>306</td>
</tr>
<tr>
<td>15.3</td>
<td>The Square Root of a Positive Semidefinite Matrix</td>
<td>308</td>
</tr>
<tr>
<td>15.4</td>
<td>The Cholesky Factorization</td>
<td>311</td>
</tr>
<tr>
<td>15.5</td>
<td>Simultaneous Diagonalization of Quadratic Forms</td>
<td>313</td>
</tr>
<tr>
<td>15.6</td>
<td>The Schur Product Theorem</td>
<td>315</td>
</tr>
<tr>
<td>15.7</td>
<td>Problems</td>
<td>317</td>
</tr>
<tr>
<td>15.8</td>
<td>Notes</td>
<td>324</td>
</tr>
<tr>
<td>15.9</td>
<td>Some Important Concepts</td>
<td>325</td>
</tr>
<tr>
<td>16</td>
<td>The Singular Value and Polar Decompositions</td>
<td>326</td>
</tr>
<tr>
<td>16.1</td>
<td>The Singular Value Decomposition</td>
<td>326</td>
</tr>
<tr>
<td>16.2</td>
<td>The Compact Singular Value Decomposition</td>
<td>331</td>
</tr>
<tr>
<td>16.3</td>
<td>The Polar Decomposition</td>
<td>333</td>
</tr>
</tbody>
</table>
Contents xi

16.4 Unitary Equivalence and Bidiagonal Matrices 337
16.5 Problems 339
16.6 Notes 342
16.7 Some Important Concepts 343

17 Singular Values and the Spectral Norm 344
17.1 Singular Values and Approximations 344
17.2 The Spectral and Frobenius Norms 346
17.3 Singular Values and Eigenvalues 349
17.4 The Pseudoinverse 353
17.5 The Spectral Condition Number 358
17.6 Complex Symmetric Matrices 361
17.7 Idempotent Matrices 362
17.8 Problems 364
17.9 Notes 368
17.10 Some Important Concepts 368

18 Interlacing and Inertia 369
18.1 The Rayleigh Quotient 369
18.2 Eigenvalue Interlacing for Sums of Hermitian Matrices 370
18.3 Eigenvalue Interlacing for Bordered Hermitian Matrices 372
18.4 Sylvester’s Criterion 375
18.5 Diagonal Entries and Eigenvalues of Hermitian Matrices 376
18.6 *Congruence and Inertia of Hermitian Matrices 377
18.7 Weyl’s Inequalities 379
18.8 *Congruence and Inertia of Normal Matrices 381
18.9 Problems 383
18.10 Notes 388
18.11 Some Important Concepts 389

19 Norms and Matrix Norms 390
19.1 Norms of Vectors 390
19.2 Norms of Matrices 391
19.3 Induced Matrix Norms 393
19.4 Matrix Norms and the Spectral Radius 395
19.5 The Point Jacobi Iterative Method 399
19.6 The Power Method for a Dominant Eigenpair 400
19.7 Problems 402
19.8 Notes 404
19.9 Some Important Concepts 405

20 Positive and Nonnegative Matrices 406
20.1 Nonnegative Matrices 406
20.2 Positive Matrices 410
20.3 Primitive Matrices 411
20.4 The Power Method for Primitive Matrices 412
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5</td>
<td>Problems</td>
<td>413</td>
</tr>
<tr>
<td>20.6</td>
<td>Notes</td>
<td>415</td>
</tr>
<tr>
<td>20.7</td>
<td>Some Important Concepts</td>
<td>416</td>
</tr>
</tbody>
</table>

Appendix A Complex Numbers

- A.1 Complex Numbers | 417
- A.2 Modulus and Argument | 420
- A.3 Conjugation and Complex Arithmetic | 420
- A.4 Polar Form of a Complex Number | 423
- A.5 The Complex Exponential Function | 425
- A.6 Problems | 426

Appendix B Polynomials

- B.1 Polynomials | 428
- B.2 The Division Algorithm | 428
- B.3 Zeros and Roots | 429
- B.4 Identity Theorems for Polynomials | 429
- B.5 Polynomials and Matrices | 429
- B.6 Problems | 430

Appendix C Basic Linear Algebra

- C.1 Functions and Sets | 432
- C.2 Matrices | 433
- C.3 Systems of Linear Equations | 439
- C.4 Determinants | 441
- C.5 Problems | 444

Appendix D Induction

- D.1 Mathematical Induction | 447
- D.2 Problems | 448

References

- 449

Index

- 450

Preface for the Second Edition

New to this Edition

This is the second edition of *A Second Course in Linear Algebra*. The new title reflects an approach to advanced linear algebra that emphasizes matrix factorizations and algorithms. The second edition includes:

- New chapters on Matrix Norms and Positive Matrices.
- Revisions that incorporate classroom experience with students.
- New sections on Interpolation, Orthogonal polynomials, Gaussian quadrature, *LU* factorization, unitary equivalence and bidiagonal matrices, induced matrix norms, iterative algorithms such as the power and point Jacobi methods, and Perron-Frobenius theory.
- Color-enhanced figures.
- More than 300 new problems and many new conceptual and numerical examples.
- A comprehensive solution manual available to instructors.

Target Readership

Matrix mathematics and linear algebra are increasingly relevant in a world focused on the acquisition and analysis of data. Consequently, this book is intended for students of pure and applied mathematics, computer science, economics, engineering, mathematical biology, operations research, physics, and statistics. We assume that the reader has completed a lower-division calculus sequence and a first course in linear algebra. Analysis is not a prerequisite for this book.

Key Features of the Book

- Block matrices are employed systematically.
- Matrix factorizations and unitary transformations are emphasized.
- More than 350 examples illustrate concepts introduced in the text.
• Topics for a one-semester course can be selected in many ways to match the needs and interests of the class.
• Reviews of complex numbers, polynomials, and basic linear algebra are included.
• More than 90 figures illustrate the geometric foundations of linear algebra.
• Special topics include polynomial interpolation, orthogonal polynomials, Gaussian quadrature, matrix norms, Perron–Frobenius theory, and the Google matrix.
• Every chapter includes problems, more than 900 in total.
• Notes at the end of chapters provide sources of additional information.
• Each chapter ends with a bullet list of important concepts.
• Symbols used in the book are listed in a table of notation, with page references.
• A comprehensive index helps readers locate concepts and definitions. More than 2,000 entries enhance the value of the book as a reference.
• Concise, direct presentation and language level are suitable for an international audience.

Coverage of the Book

Matrices and vector spaces in this book are over the complex field. The use of complex scalars is essential to the study of eigenvalues, even for real matrices, and is consistent with modern numerical linear algebra software. Moreover, it is aligned with applications in physics (complex wave functions and Hermitian matrices in quantum mechanics), electrical engineering (analysis of circuits and signals in which both phase and amplitude are important), statistics (time series and characteristic functions), and computer science (fast Fourier transforms, convergent matrices in iterative algorithms, and quantum computing).

While studying linear algebra with this book, students can observe and practice good mathematical communication skills. These skills include how to state (and read) a theorem carefully; how to choose (and use) hypotheses; how to prove a statement by induction, by contradiction, or by contraposition; how to improve a theorem by weakening its hypotheses or strengthening its conclusions; how to use counterexamples; and how to write a cogent solution to a problem.

The following topics in the book are useful in applications of linear algebra, but fall outside the realm of linear transformations and similarity, so they may be absent from textbooks that adopt an abstract operator approach:

• Gershgorin’s disk theorem on eigenvalue location
• The pivot-column decomposition and full-rank factorizations
• Commutants and trace-zero matrices (Shoda’s theorem)
• QR, bidiagonal, triangular, and Cholesky factorizations
• Discrete Fourier transforms
• Circulant matrices
• Eigenvalue adjustments and the Google matrix
• Nonnegative matrices (Markov matrices) and positive matrices (Perron’s theorem)
Preface for the Second Edition

- The singular value and compact singular value decompositions
- Low-rank approximations to a data matrix
- Generalized inverses (Moore–Penrose inverses)
- Positive semidefinite matrices
- Schur complements
- Hadamard (entrywise) and Kronecker (tensor) products
- The Schur product theorem
- Matrix norms and the spectral radius
- Error bounds for eigenvalue computations (Bauer–Fike theorem)
- Convergent matrices, power-bounded matrices, and iterative algorithms
- Least-squares and minimum-norm solutions
- Complex symmetric matrices
- Inertia of normal matrices
- Eigenvalue and singular-value interlacing
- Inequalities among eigenvalues, singular values, and diagonal entries

Structure of the Book

A comprehensive list of symbols and notation (with page references) follows the Preface.

Chapter 1 reviews complex and real vector spaces, with numerous examples. The essential concepts of linear independence, linear dependence, and spanning lists are introduced, and the book’s first matrix factorization emerges: the pivot-column decomposition.

Chapter 2 focuses on bases, dimension, and change-of-basis matrices. Matrix similarity arises as the relation between the representations of a linear transformation with respect to two bases. Lagrange interpolation provides examples of bases in vector spaces of polynomials. We observe instability with interpolation at equally spaced nodes and better behavior with interpolation at Chebyshev nodes. Integration of a polynomial interpolation leads to Simpson’s rule and other Newton–Cotes quadrature formulae.

The block-matrix paradigm used throughout the book is introduced in Chapter 3. Block-matrix notation is useful in thinking about and communicating mathematical concepts. It focuses attention on the main ideas, instead of a quagmire of symbols and subscripts. Block matrices are central to the logic and coding of modern numerical algorithms. Row and column partitions are essential to the representation of a matrix product as the sum of outer products. Block Gaussian elimination leads to the Schur complement and determinant formulae for bordered matrices. Kronecker (tensor) products are a special topic at the end of this chapter.

Rank is the core concept in Chapter 4, which begins with the rank-nullity theorem and the subspace-intersection theorem. Block-matrix methods and full-rank factorizations are employed to present the basic rank inequalities for matrix sums and products. We present an algorithm to obtain LU factorizations that makes use of the outer-product representation for a matrix product. Shoda’s theorem about matrix commutators and trace-zero matrices is a special topic in the final section.
Chapters 5 and 6 review geometry in the Euclidean plane and use it to motivate axioms for inner product spaces and normed linear spaces. Topics include orthogonal vectors, orthogonal projections, orthonormal bases, orthogonalization, the Riesz representation theorem, adjoints, and applications of the theory to Fourier series. Orthogonal polynomials and Gaussian quadrature are the special topic in Chapter 6.

Chapter 7 introduces unitary matrices, which are used in modern computational algorithms because they are easy to invert and exhibit superior stability properties in numerical calculations. In this chapter, we use unitary matrices to construct the QR factorization and a unitary similarity to upper Hessenberg form.

Chapter 8 discusses orthogonal projections, best approximations, least-squares solutions of linear systems, and the use of QR factorizations to solve the normal equations.

Chapter 9 introduces eigenvalues, eigenvectors, and geometric multiplicity. We show that an $n \times n$ real or complex matrix has at least one and not more than n distinct eigenvalues, and use Gershgorin’s disk theorem to identify a region in the complex plane that contains them.

Chapter 10 deals with the characteristic polynomial and algebraic multiplicity. We develop criteria for diagonalizability and define primary matrix functions of a diagonalizable matrix. Topics include Fibonacci numbers, the eigenvalues of AB and BA, commutants, and simultaneous diagonalization.

Chapter 11 features Schur’s triangularization theorem and a related result for a commuting family. Schur’s theorem is used to prove the Cayley–Hamilton theorem: each square matrix is annihilated by its characteristic polynomial. The latter result motivates introduction of the minimal polynomial and a study of its properties. We prove Sylvester’s theorem on linear matrix equations and use it to show that every square matrix is similar to a block diagonal matrix with unispectral diagonal blocks. The special topic in this chapter discusses perturbations of the Google matrix that facilitate computation of website rankings.

Chapter 12 builds on the preceding chapter to show that every square matrix is similar to a Jordan matrix that is unique up to permutation of its direct summands.

We discuss several applications of the Jordan canonical form in Chapter 13. They include systems of linear differential equations, an analysis of the Jordan structures of AB and BA, convergent and power-bounded matrices, a limit theorem for stochastic matrices that have positive entries, similarity of a matrix to its transpose, and similarity of a matrix to its complex conjugate.

Chapter 14 is about normal matrices: matrices that commute with their conjugate transpose. The spectral theorem says that a matrix is normal if and only if it is unitarily diagonalizable. Hermitian, skew-Hermitian, unitary, real-orthogonal, real-symmetric, and circulant matrices are all normal.

Positive semidefinite matrices are the subject of Chapter 15. These matrices arise in statistics (correlation matrices and the normal equations), mechanics (kinetic and potential energy in a vibrating system), and geometry (ellipsoids). Topics include matrix square roots, simultaneous diagonalization of quadratic forms, Cholesky factorization, and Hadamard and Kronecker products.

The principal result in Chapter 16 is the singular value decomposition, which is at the heart of many modern numerical algorithms in statistics, control theory, approximation, image compression, and data analysis. Topics include the compact singular value decomposition and polar decompositions, with special attention to uniqueness of these factorizations. A special topic is unitary equivalence of a complex matrix to an upper bidiagonal matrix.
In Chapter 17, the singular value decomposition is used to compress an image or data matrix. Other applications of the singular value decomposition discussed are the generalized inverse (Moore–Penrose inverse) of a matrix; inequalities between singular values and eigenvalues; the spectral norm of a matrix; perturbation bounds for linear systems and eigenvalue problems; and canonical forms for matrices that are complex symmetric or idempotent.

Chapter 18 investigates eigenvalue interlacing phenomena for Hermitian matrices that are bordered or are subjected to an additive perturbation. Related results include an interlacing theorem for singular values, a determinant criterion for positive definiteness, and inequalities that link the eigenvalues and diagonal entries of a Hermitian matrix. We prove Sylvester’s inertia theorem for Hermitian matrices and a generalized inertia theorem for normal matrices.

Norms and matrix norms are the topics in Chapter 19. Eight examples of matrix norms are presented, with a systematic account of inequalities between pairs of them. Many iterative algorithms require that a particular matrix has spectral radius less than 1, which would be the case if some matrix norm of that matrix is less than 1. We analyze two iterative algorithms: the point Jacobi method to solve a linear system and the power method to find a dominant eigenpair. Facts about matrix norms are used to prove Gelfand’s formula for the spectral radius.

Chapter 20 is devoted to Perron’s theorem about the dominant eigenpair and limits of powers of a real square matrix with positive entries. This result has been used in diverse fields such as economic modeling, team ranking, population dynamics, genetics, and city planning. We prove it using facts about matrix norms and the Jordan canonical form.

Four short appendices review notation and concepts for complex numbers, polynomials, basic linear algebra, and mathematical induction. The appendices are provided for reference, and readers can consult them as needed.

The appendices are followed by a short list of references and an extensive index.

Acknowledgments

We thank Zachary Glassman for producing many of our illustrations and for answering our \LaTeX questions. The cute animal illustrations in Figures 2.1, 2.2, 7.2, 9.1, 9.4, 9.5, 9.6, A.2, A.4, and A.5 were produced with the wonderful TikZlings package of samcarter.

We thank Zhongshan Li, Dennis Merino, Russ Merris, and Fuzhen Zhang for their comments on evolving manuscripts for this book.

We thank the students who attended the first author’s advanced linear algebra courses at Pomona College during fall 2014, fall 2015, spring 2019, and fall 2022. In particular, we thank Ahmed Al Fares, Andreas Biekert, Arsum Chaudhary, Andi Chen, Wanning Chen, Alex Cloud, Bill DeRose, Jacob Fiksel, Logan Gilbert, Sheridan Grant, Adam He, David Khatami, Cheng Wai Koo, Bo Li, Shi Yue Li, Samantha Morrison, Nathanael Roy, Michael Someck, Sallie Walecka, Angie Wang, Summer Will, Wentao Yuan, and Alan Zhou for their comments.

Special thanks to Zoë Batterman, Christopher Donnay, Gordon Elmagar, Ciaran Evans, Elizabeth Sarapata, Adam Starr, Adam Waterbury, and Chris Wang for their eagle-eyed reading of the text.

S. R. Garcia thanks the National Science Foundation for support in the form of grants DMS-2054002 and DMS-1800123.
Notation

∈, /∈ is / is not an element of
⊆ is a subset of
∅ the empty set
∪ union
∩ intersection
× Cartesian product
\(f : X \to Y \) \(f \) is a function from \(X \) into \(Y \)
\(\implies \) implies
\(\iff \) is implied by
\(\iff \) if and only if
\(\approx \) approximately equal
\(x \mapsto y \) implicit definition of a function that maps \(x \) to \(y \)
\(\mathbb{N} = \{1, 2, 3, \ldots\} \) the set of natural numbers
\(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) the set of integers
\(\mathbb{R} \) the set of real numbers
\(\mathbb{C} \) the set of complex numbers
\(\mathbb{F} \) field of scalars (\(\mathbb{F} = \mathbb{R} \) or \(\mathbb{C} \))
\(\text{Re} \, z \) real part of the complex number \(z \) (p. 417)
\(\text{Im} \, z \) imaginary part of the complex number \(z \) (p. 417)
\(|z| \) modulus of the complex number \(z \) (p. 420)
\(\arg z \) argument of the complex number \(z \) (p. 420)
\([a, b] \) a real interval that includes its endpoints \(a, b \)
\(\mathcal{U}, \mathcal{V}, \mathcal{W} \) vector spaces
\(\mathcal{U}, \mathcal{V}, \mathcal{W} \) subsets of vector spaces
\(a, b, c, \ldots \) scalars
\(\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots \) (column) vectors
\(A, B, C, \ldots \) matrices
\(\mathbb{M}_{m\times n}(\mathbb{F}) \) the set of \(m \times n \) matrices with entries in \(\mathbb{F} \)
\(\mathbb{M}_n(\mathbb{F}) \) the set of \(n \times n \) matrices with entries in \(\mathbb{F} \)
\(\mathbb{M}_{m\times n} \) the set of \(m \times n \) matrices with entries in \(\mathbb{C} \)
\(\mathbb{M}_n \) the set of \(n \times n \) matrices with entries in \(\mathbb{C} \)
\(\cong \) an equivalence relation (p. 51)
\(\deg p \) degree of a polynomial \(p \) (p. 428)
\(\delta_{ij} \) Kronecker delta (p. 434)
\((x)_i \) \(i \)th entry of a vector \(x \) (p. 439)
\(I_n \) \(n \times n \) identity matrix (p. 434)
List of Notation

I

identity matrix (size inferred from context) (p. 434)

diag(x₁, x₂, ..., xₙ)
diagonal matrix with diagonal entries x₁, x₂, ..., xₙ
(p. 435)

A₀ = I
convention for zeroth power of a matrix (p. 437)

Aᵀ
transpose of A (p. 437)

A⁻¹
inverse of Aᵀ (p. 437)

A
conjugate of A (p. 437)

A⁻¹
inverse of A* (p. 437)

tr A
trace of A (p. 438)

det A
determinant of A (p. 441)

adj A
adjugate of A (p. 442)

sgn σ
sign of a permutation σ (p. 443)

Pₙ
set of complex polynomials of degree at most n (p. 4)

Pₙ(ℝ)
set of real polynomials of degree at most n (p. 4)

P
set of all complex polynomials (p. 4)

C[a, b]
set of continuous ℝ-valued functions on [a, b] (p. 4)

C[a, b]
set of continuous ℂ-valued functions on [a, b] (p. 4)

null A
null space of a matrix A (p. 5)

col A
column space of a matrix A (p. 6)

row A
row space of a matrix A (p. 6)

P_even
set of even complex polynomials (p. 7)

P_odd
set of odd complex polynomials (p. 7)

A acting on a subspace U (p. 6)

span S
span of a subset S of a vector space (p. 8)

e
all-ones vector (p. 10)

U ∩ W
intersection of subspaces U and W (p. 11)

U + W
sum of subspaces U and W (p. 12)

U ⊕ W
direct sum of subspaces U and W (p. 12)

v₁, v₂, ..., ̂vᵣ, ..., vᵣ
list of vectors with ̂vᵣ omitted (p. 17)

e₁, e₂, ..., eₙ
standard basis for ℂⁿ (p. 28)

Eᵢ,j
matrix with (i, j) entry 1 and all others 0 (p. 28)

dim V
dimension of V (p. 28)

[v]ᵦ
coordinate vector of v with respect to a basis β
(p. 33)

 Ł(V, ℋ)
set of linear transformations from V to ℋ (p. 35)

 Ł(V)
set of linear transformations from V to itself (p. 35)

ker T
kernel of T (p. 36)

ran T
range of T (p. 36)

I
identity linear transformation (p. 38)

rank A
rank of a matrix A (p. 31)

nullity A
nullity of a matrix A (p. 74)

⋆
unspecified matrix entry (p. 63)

A ⊕ B
direct sum of matrices A and B (p. 64)

A ⊗ B
Kronecker product of matrices A and B (p. 68)

vec A
vector of stacked columns of a matrix A (p. 69)
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[A, B]]</td>
<td>commutator of matrices (A) and (B) (p. 85)</td>
</tr>
<tr>
<td>\langle x, y \rangle</td>
<td>inner product of vectors (x) and (y) (p. 98)</td>
</tr>
<tr>
<td>\langle A, B \rangle_F</td>
<td>Frobenius inner product of matrices (A) and (B) (p. 99)</td>
</tr>
<tr>
<td>\perp</td>
<td>orthogonal (p. 100)</td>
</tr>
<tr>
<td>|x|</td>
<td>norm of a vector (x) (p. 101)</td>
</tr>
<tr>
<td>|x|_2</td>
<td>Euclidean norm of a vector (x) (p. 101)</td>
</tr>
<tr>
<td>|A|_F</td>
<td>Frobenius norm of a matrix (A) (p. 101)</td>
</tr>
<tr>
<td>|x|_1</td>
<td>(\ell^1) norm (absolute sum norm) of a vector (x) (p. 106)</td>
</tr>
<tr>
<td>|x|_\infty</td>
<td>(\ell^\infty) norm (max norm) of a vector (x) (p. 106)</td>
</tr>
<tr>
<td>\gamma {T}_\beta</td>
<td>matrix representation of (T \in \mathcal{L}(\mathcal{V}, \mathcal{W})) with respect to bases (\beta) and (\gamma) (p. 118)</td>
</tr>
<tr>
<td>(f(x^+))</td>
<td>one-sided limit from the right (p. 126)</td>
</tr>
<tr>
<td>(f(x^-))</td>
<td>one-sided limit from the left (p. 126)</td>
</tr>
<tr>
<td>(P_v)</td>
<td>projection onto a unit vector (v) (p. 138)</td>
</tr>
<tr>
<td>(F_n)</td>
<td>(n \times n) Fourier matrix (p. 140)</td>
</tr>
<tr>
<td>(\mathcal{U}^\perp)</td>
<td>orthogonal complement of a set (\mathcal{U}) (p. 158)</td>
</tr>
<tr>
<td>(P_{U^\perp})</td>
<td>orthogonal projection onto a subspace (U^\perp) (p. 163)</td>
</tr>
<tr>
<td>(d(v, U))</td>
<td>distance from (v) to (U) (p. 167)</td>
</tr>
<tr>
<td>(G(u_1, u_2, \ldots, u_n))</td>
<td>Gram matrix (p. 170)</td>
</tr>
<tr>
<td>(g(u_1, u_2, \ldots, u_n))</td>
<td>Gram determinant (p. 170)</td>
</tr>
<tr>
<td>spec (A)</td>
<td>spectrum of (A) (p. 186)</td>
</tr>
<tr>
<td>(\mathcal{E}_k(A))</td>
<td>eigenspace of (A) for eigenvalue (\lambda) (p. 189)</td>
</tr>
<tr>
<td>(\mathcal{J}_k(A))</td>
<td>(k)th Gershgorin disk of (A) (p. 190)</td>
</tr>
<tr>
<td>(\mathcal{J}(A))</td>
<td>Gershgorin region of (A) (p. 190)</td>
</tr>
<tr>
<td>(R_k(A))</td>
<td>(k)th deleted absolute row sum of (A) (p. 190)</td>
</tr>
<tr>
<td>(R_k(A))</td>
<td>(k)th absolute row sum of (A) (p. 190)</td>
</tr>
<tr>
<td>(p_\lambda(z))</td>
<td>characteristic polynomial of (A) (p. 202)</td>
</tr>
<tr>
<td>(\mathcal{F}')</td>
<td>commutant of a set of matrices (\mathcal{F}) (p. 213)</td>
</tr>
<tr>
<td>(e^A)</td>
<td>matrix exponential of (A) (p. 213)</td>
</tr>
<tr>
<td>(m_p(z))</td>
<td>minimal polynomial of (A) (p. 226)</td>
</tr>
<tr>
<td>(C_p)</td>
<td>companion matrix of the polynomial (p) (p. 227)</td>
</tr>
<tr>
<td>(J_k(\lambda))</td>
<td>(k \times k) Jordan block with eigenvalue (\lambda) (p. 241)</td>
</tr>
<tr>
<td>(J_k)</td>
<td>(k \times k) nilpotent Jordan block (p. 241)</td>
</tr>
<tr>
<td>(w_1, w_1, \ldots, w_q)</td>
<td>Weyr characteristic of a matrix (p. 248)</td>
</tr>
<tr>
<td>(\rho(A))</td>
<td>spectral radius of (A) (p. 259)</td>
</tr>
<tr>
<td>(\mathcal{G}_\lambda(A))</td>
<td>generalized eigenspace of (A) for eigenvalue (\lambda) (p. 253)</td>
</tr>
<tr>
<td>(\Delta(A))</td>
<td>defect from normality of (A) (p. 282)</td>
</tr>
<tr>
<td>(H_n)</td>
<td>(n \times n) Hartley matrix (p. 286)</td>
</tr>
<tr>
<td>(R_n)</td>
<td>real part of (F_n) (p. 286)</td>
</tr>
<tr>
<td>(T_n)</td>
<td>imaginary part of (F_n) (p. 286)</td>
</tr>
<tr>
<td>(A \circ B)</td>
<td>Hadamard product of (A) and (B) (p. 315)</td>
</tr>
<tr>
<td>(A \bullet B)</td>
<td>Jordan product of (A) and (B) (p. 320)</td>
</tr>
<tr>
<td>(\sigma_{\text{max}}(A))</td>
<td>maximum singular value (p. 346)</td>
</tr>
<tr>
<td>(|A|_2)</td>
<td>spectral norm of a matrix (A) (p. 347)</td>
</tr>
<tr>
<td>(\sigma_{\text{min}}(A))</td>
<td>minimum singular value (p. 350)</td>
</tr>
<tr>
<td>(\sigma_1(A), \sigma_2(A), \ldots)</td>
<td>singular values of (A) (p. 350)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>A^+</td>
<td>pseudoinverse of A (p. 353)</td>
</tr>
<tr>
<td>$\kappa_2(A)$</td>
<td>spectral condition number of A (p. 358)</td>
</tr>
<tr>
<td>$\mathcal{W}(A)$</td>
<td>numerical range of A (p. 384)</td>
</tr>
<tr>
<td>$|x|_{(k)}$</td>
<td>k-norm of a vector x (p. 391)</td>
</tr>
<tr>
<td>$|x|_S$</td>
<td>$|Sx|$, in which S is invertible (p. 391)</td>
</tr>
<tr>
<td>$|A|_1$</td>
<td>ℓ_1 norm of a matrix A (p. 391)</td>
</tr>
<tr>
<td>$|A|_{\infty}$</td>
<td>max norm of a matrix A (p. 392)</td>
</tr>
<tr>
<td>$N_{n\text{-max}}(A)$</td>
<td>n-max norm of a matrix A (p. 392)</td>
</tr>
<tr>
<td>$N_{\text{col max}}(A)$</td>
<td>column max norm of a matrix A (p. 392)</td>
</tr>
<tr>
<td>$N_{1}(A)$</td>
<td>maximum absolute column-sum norm (p. 394)</td>
</tr>
<tr>
<td>$N_{\infty}(A)$</td>
<td>maximum absolute row-sum norm (p. 395)</td>
</tr>
<tr>
<td>$A_{(k)}$</td>
<td>$k \times k$ leading principal submatrix of A (p. 436)</td>
</tr>
<tr>
<td>S_n</td>
<td>nth statement in an induction (p. 447)</td>
</tr>
<tr>
<td>$</td>
<td>A</td>
</tr>
<tr>
<td>$</td>
<td>A</td>
</tr>
<tr>
<td>$</td>
<td>x</td>
</tr>
</tbody>
</table>