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1 Vector Spaces

Many types of mathematical objects can be added and scaled: vectors in the plane, real-valued

functions on a given real interval, polynomials, and real or complex matrices. Through long

experience with these and other examples, mathematicians have identified a short list of essen-

tial features (axioms) that define a consistent and inclusive mathematical framework known

as a vector space.

The theory of vector spaces and linear transformations provides a conceptual framework

and vocabulary for linear mathematical models of diverse phenomena. Even inherently non-

linear physical theories may be well approximated for a broad range of applications by linear

theories, whose natural setting is in real or complex vector spaces.

Examples of vector spaces include the two-dimensional real plane (the setting for plane

analytic geometry and two-dimensional Newtonian mechanics) and three-dimensional real

Euclidean space (the setting for solid analytic geometry, classical electromagnetism, and an-

alytical dynamics). Other kinds of vector spaces abound in science and engineering. For

example, standard mathematical models in quantum mechanics, electrical circuits, and sig-

nal processing use complex vector spaces. Many scientific theories exploit the formalism of

vector spaces, which supplies powerful mathematical tools that are based only on the axioms

for a vector space and their logical consequences, not on the details of a particular application.

In this chapter, we provide formal definitions of real and complex vector spaces, and many

examples. Among the important concepts introduced are linear combinations, span, linear

independence, and linear dependence.

1.1 What Is a Vector Space?

A vector space comprises four things that work together in harmony:

(a) A field F of scalars, which in this book is either C (complex numbers) or R (real numbers).

(b) A set V of objects called vectors.

(c) An operation of vector addition that takes any pair of vectors u, v ∈ V and assigns to them

a vector in V denoted by u + v (their sum).

(d) An operation of scalar multiplication that takes any scalar c ∈ F and any vector u ∈ V

and assigns to them a vector in V denoted by cu.

Definition 1.1.1 Let F = R or C. Then V is a vector space over the field F (alternatively, V

is an F-vector space) if the scalars F, the vectors V , and the operations of vector addition and

scalar multiplication satisfy the following axioms:

(1) There is a unique element 0 ∈ V that is the additive identity element for vector addition,

that is, 0 + u = u for all u ∈ V . The vector 0 is the zero vector.
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2 Vector Spaces

(2) Vector addition is commutative: u + v = v + u for all u, v ∈ V .

(3) Vector addition is associative: u + (v + w) = (u + v) + w for all u, v, w ∈ V .

(4) Additive inverses exist and are unique: for each u ∈ V , there is a unique −u ∈ V such

that u + (−u) = 0.

(5) The number 1 is the identity element for scalar multiplication: 1u = u for all u ∈ V .

(6) Multiplication in F and scalar multiplication are compatible: a(bu) = (ab)u for all a, b ∈

F and all u ∈ V .

(7) Scalar multiplication distributes over vector addition: c(u + v) = cu + cv for all c ∈ F

and all u, v ∈ V .

(8) Addition in F distributes over scalar multiplication: (a + b)u = au + bu for all a, b ∈ F

and all u ∈ V .

A vector space over R is a real vector space; a vector space over C is a complex vector

space. To help distinguish vectors from scalars, we often denote vectors (elements of the

set V) by boldface lowercase letters such as a, b, u, and v. In particular, this distinguishes the

scalar 0 from the vector 0.

We often need to derive a conclusion from the fact that a vector cu is the zero vector, so we

should look carefully at how that can happen.

Theorem 1.1.2 Let V be an F-vector space, let c ∈ F, and let u ∈ V . The following statements

are equivalent:

(a) c = 0 or u = 0.

(b) cu = 0.

Proof (a) ⇒ (b) First suppose that u = 0. Then

c0 = c0 + 0 Axiom (1)

= c0 +
(

c0 + (−(c0))
)

Axiom (4)

= (c0 + c0) + (−(c0)) Axiom (3)

= c(0 + 0) + (−(c0)) Axiom (7)

= c0 + (−(c0)) Axiom (1)

= 0 Axiom (4).

In particular, observe that

c0 = 0 for any c ∈ F. (1.1.3)

Now let c = 0 and compute

0u = 0u + 0 Axiom (1)

= 0u +
(

0u + (−(0u))
)

Axiom (4)

= (0u + 0u) + (−(0u)) Axiom (3)

= (0 + 0)u + (−(0u)) Axiom (8)

= 0u + (−(0u))

= 0 Axiom (4).
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1.2 Examples of Vector Spaces 3

(b) ⇒ (a) Suppose that cu = 0. If c = 0, we are done. If c �= 0, then

u = 1u Axiom (5)

= (c−1c)u

= c−1(cu) Axiom (6)

= c−10

= 0 by (1.1.3).

Corollary 1.1.4 Let V be an F-vector space. Then (−1)u = −u for every u ∈ V .

Proof Let u ∈ V . We must show that (−1)u + u = 0. Use the vector-space Axioms (5) and

(8), together with the preceding theorem, and compute

(−1)u + u = (−1)u + 1u Axiom (5)

= (−1 + 1)u Axiom (8)

= 0u

= 0 Theorem 1.1.2.

Addition in a vector space is an operation on only two vectors. We define addition of three

or more vectors via a sequence of two-vector additions. We can define u + v + w to be

(u + v) + w or u + (v + w)

because Axiom (4) (associativity) says that these expressions are equal. We can define u+v+

w + x in a similar fashion (insert suitable parentheses) to be

(u + v) + (w + x), u + (v + (w + x)), or (u + (v + w)) + x

because we can prove that these expressions are equal. For example, two applications of

Axiom (4) show that

(u + (v + w)) + x = ((u + v) + w) + x = (u + v) + (w + x).

If n ≥ 3, we define v1 + v2 + · · · + vn (a finite sum) via any sequence of two-vector additions

obtained by insertion of suitable parentheses. It follows from Axiom (4) that the sum obtained

does not depend on how the parentheses are inserted.

1.2 Examples of Vector Spaces

Axiom (1) ensures that every vector space contains a zero vector, so a vector space cannot be

empty. However, the axioms for a vector space permit V to contain only the zero vector. Such

a vector space is not interesting, and we often need to exclude it when formulating theorems.

Definition 1.2.1 Let V be an F-vector space. If V = {0}, then V is a zero vector space; if

V �= {0}, then V is a nonzero vector space.

In each of the following examples, we describe the elements of the set V (the vectors), the

zero vector, and the operations of scalar multiplication and vector addition. In this book, the

field F is always either C or R.
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4 Vector Spaces

Example 1.2.2 Let V = F
n, the set of n × 1 matrices (column vectors) with entries from F.

For typographical convenience, we often write u = [ui] or u = [u1 u2 . . . un]T instead of1

u =

⎡

⎢

⎢

⎢

⎣

u1

u2

...

un

⎤

⎥

⎥

⎥

⎦

∈ F
n for u1, u2, . . . , un ∈ F.

Vector addition of u = [ui] and v = [vi] is defined by u+v = [ui+vi], and scalar multiplication

by elements of F is defined by cu = [cui]; we refer to these as entrywise operations. The zero

vector in F
n is 0n = [0 0 . . . 0]T. We often omit the subscript from a zero vector when its

size can be inferred from context.

Example 1.2.3 Let V ∈ M1×n(F), the set of 1 × n matrices (row vectors) with entries from F.

Vector addition and scalar multiplication are defined entrywise, as in the preceding example.

The zero vector is the row vector 0T.

Example 1.2.4 Let V = Mm×n(F), the set of m × n matrices with entries from F. Vector

addition and scalar multiplication are defined entrywise, as in the preceding two examples.

The zero vector in Mm×n(F) is the matrix 0m×n ∈ Mm×n(F), all entries of which are zero. We

often omit the subscripts from a zero matrix if its size can be inferred from context.

Example 1.2.5 Let V = Pn, the set of polynomials of degree at most n with complex coeffi-

cients. The set of polynomials of degree at most n with real coefficients is denoted by Pn(R).

Addition of polynomials is defined by adding the coefficients of corresponding monomials.

For example, if p(z) = iz2−5 and q(z) = −7z2+3z+2 in P2, then (p+q)(z) = (i−7)z2+3z−3.

Scalar multiplication of a polynomial by a scalar c is defined by multiplying each coefficient

by c. For example, (4p)(z) = 4iz2 − 20. The zero vector in Pn is the zero polynomial; see

Appendix B.1.

Example 1.2.6 Let V = P , the set of all polynomials with complex coefficients. The oper-

ations of vector addition and scalar multiplication are the same as in the preceding example,

and the zero vector in P is again the zero polynomial.

Example 1.2.7 Let V and W be vector spaces over the same field F. The Cartesian product

V × W is the set of all ordered pairs (v, w) in which v ∈ V and w ∈ W . Vector addition of

(v1, w1) and (v2, w2) is defined by (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), in which v1 + v2

and w1 + w2 denote the results of vector addition operations in V and W , respectively. Scalar

multiplication by elements of F is defined by c(v, w) = (cv, cw), in which cv and cw denote

the results of scalar multiplication operations in V and W , respectively. The zero vector in

V × W is (0, 0), which employs the respective zero vectors in V and W . The elements of the

vector spaces V and W can come from different sets, but it is essential that both vector spaces

be over the same field.

Example 1.2.8 Let V = CF[a, b], the set of continuous F-valued functions on an interval

[a, b] ⊂ R with a < b. If the field designator is absent, it is understood that F = C, that

is, C[0, 1] is CC[0, 1]. The operations of vector addition and scalar multiplication are defined

1 If you encounter an unfamiliar symbol in this book, consult the Notation section for a cross-reference to a definition.

The Notation section entry for the symbol AT identifies it as the transpose of a matrix A and points to Appendix C.2.
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1.3 Subspaces 5

pointwise. If f , g ∈ CF[a, b], then f +g is the F-valued function on [a, b] defined by (f +g)(t) =

f (t) + g(t) for each t ∈ [a, b]. If c ∈ F, the F-valued function cf is defined by (cf )(t) = cf (t)

for each t ∈ [a, b]. A theorem from calculus ensures that f +g and cf are continuous if f and g

are continuous, so sums and scalar multiples of elements of CF[a, b] are in CF[a, b]. The zero

vector in CF[a, b] is the zero function, which takes the value zero at every point in [a, b].

Example 1.2.9 Let V be the set of all infinite sequences u = (u1, u2, . . . ), in which each ui ∈ F

and ui �= 0 for only finitely many values of the index i. The operations of vector addition and

scalar multiplication are defined entrywise. The zero vector in V is the zero infinite sequence

0 = (0, 0, . . . ). We say that V is the F-vector space of finitely nonzero sequences.

1.3 Subspaces

Definition 1.3.1 A subspace of an F-vector space V is a subset U ⊆ V that is an

F-vector space with the same vector addition and scalar multiplication operations as in V .

A subspace is nonempty; it is a vector space, so it contains a zero vector.

Example 1.3.2 If V is an F-vector space, then {0} and V itself are subspaces of V .

To show that a subset U of an F-vector space V is a subspace, we do not need to verify the

vector-space Axioms (2)–(3) and (5)–(8) because they are automatically satisfied; we say that

U inherits these properties from V . However, we must show the following:

(a) Sums and scalar multiples of elements of U are in U (that is, U is closed under vector

addition and scalar multiplication).

(b) U contains the zero vector of V .

(c) U contains an additive inverse for each of its elements.

The following theorem describes a streamlined way to verify these conditions.

Theorem 1.3.3 Let V be an F-vector space and let U be a nonempty subset of V . Then U is a

subspace of V if and only if cu + v ∈ U for all u, v ∈ U and all c ∈ F.

Proof If U is a subspace, u, v ∈ U , and c ∈ F, then cu + v ∈ U because a subspace is closed

under scalar multiplication and vector addition.

Conversely, suppose that cu + v ∈ U for all u, v ∈ U and every c ∈ F. We must verify the

properties (a), (b), and (c) in the preceding list.

(a) We have cu = cu + 0 ∈ U and u + v = 1u + v ∈ U for all c ∈ F and all u, v ∈ U .

(b) Let u ∈ U . Corollary 1.1.4 ensures that (−1)u is the additive inverse of u, so 0 = (−1)u+

u ∈ U .

(c) Since (−1)u = (−1)u + 0, it follows that the additive inverse of u is in U .

The following examples use the criterion in the preceding theorem to verify that a certain

subset of a vector space is a subspace.

Example 1.3.4 Let A ∈ Mm×n(F). The null space of A is

null A = {x ∈ F
n : Ax = 0} ⊆ F

n. (1.3.5)
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6 Vector Spaces

n

0

U

x3

x2

x1

Figure 1.1 A plane U through the origin is a subspace of R3.

Since A0n = 0m, the zero vector of Fn is in null A, which is therefore not empty. If x, y ∈ null A,

then Ax = 0 and Ay = 0. For any c ∈ F, we have A(cx + y) = cAx + Ay = c0 + 0 = 0, so

cx + y ∈ null A. The preceding theorem ensures that null A is a subspace of Fn.

Example 1.3.6 Let n = [a b c]T ∈ R
3 be nonzero and refer to Figure 1.1. The set U = {x =

[x1 x2 x3]T ∈ R
3 : ax1 +bx2 +cx3 = 0} is the plane in R

3 that contains the zero vector and has

normal vector n. Since nT ∈ M1×3(R) and nTx = ax1 + bx2 + cx3, it follows that U = null nT.

The preceding example ensures that U is a subspace of R3.

Example 1.3.7 Let A ∈ Mm×n(F). The column space of A is

col A = {Ax : x ∈ F
n} ⊆ F

m. (1.3.8)

Since A0n = 0m, the zero vector of Fm is in col A, which is therefore not empty. If u, v ∈ col A,

then there are x, y ∈ F
n such that u = Ax and v = Ay. For any c ∈ F, we have cu + v =

cAx+Ay = A(cx+y), so cu+v ∈ col A. Theorem 1.3.3 ensures that col A is a subspace of Fm.

Example 1.3.9 Let A ∈ Mm×n(F). The row space of A is

row A = {xTA : x ∈ F
m} ⊆ M1×n(F). (1.3.10)

Arguments similar to those in the preceding example show that row A is a subspace of

M1×n(F). The row vector xTA and the column vector ATx are transposes of each other. This

one-to-one correspondence between the elements of row A and col AT permits us to deduce

properties of one of these subspaces from properties of the other.

Example 1.3.11 Let V = Mm×n(F) and let U ⊆ V be the subset of matrices whose last row

has only zero entries. The zero matrix is in U . Sums and scalar multiples of elements of U

have zero last row. It follows that U is a subspace of V .

Example 1.3.12 Let A ∈ Mm(F) and let U be a subspace of Mm×n(F). We claim that

AU = {AX : X ∈ U}

is a subspace of Mm×n(F). Since 0 ∈ U , we have 0 = A0 ∈ AU , which is therefore not empty.

Moreover, cAX + AY = A(cX + Y) ∈ AU for any scalar c and any X, Y ∈ U . Theorem 1.3.3

ensures that AU is a subspace of Mm×n(F). For example, AMm×1(F) = col A.

The next four examples involve subspaces whose elements are polynomials.
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1.4 Linear Combinations, Lists, and Span 7

Example 1.3.13 P5 is a subspace of P; see Examples 1.2.5 and 1.2.6. Sums and scalar

multiples of polynomials of degree 5 or less are in P5.

Example 1.3.14 P5(R) is a subset of P5, but it is not a subspace. For example, the scalar 1 is

in P5(R), but i1 = i /∈ P5(R). The issue here is that the scalars for the vector space P5(R) are

real numbers and the scalars for the vector space P5 are complex numbers. A subspace and

the vector space that contains it must use the same field of scalars.

Example 1.3.15 A polynomial p ∈ P is even if p(−z) = p(z) for all z. We denote the set of

even polynomials by Peven. A polynomial p is odd if p(−z) = −p(z) for all z. We denote the

set of odd polynomials by Podd. For example, p(z) = 2 + 3z2 is even and p(z) = 5z + 4z3 is

odd. Constant polynomials are even; the zero polynomial is both even and odd. Each of Peven

and Podd is a subspace of P .

Example 1.3.16 The complex vector space P is a subspace of the complex vector space

C[a, b]. Every polynomial is a continuous function, and cp + q ∈ P whenever p, q ∈ P and

c ∈ C. Theorem 1.3.3 ensures that P is a subspace of C[a, b].

1.4 Linear Combinations, Lists, and Span

The basic operations in an F-vector space permit us to multiply vectors by scalars and then add

them. For example, in the real vector space R
2, consider the vectors u, v, w, and z illustrated

in Figure 1.2. A computation reveals that

7u − 5v + w = 7

[

1

1

]

− 5

[

1

2

]

+

[

−1

2

]

=

[

1

−1

]

= z, (1.4.1)

so z is a sum of scalar multiples of the vectors u, v, and w. We also have

− u + v − w = −

[

1

1

]

+

[

1

2

]

−

[

−1

2

]

=

[

1

−1

]

= z, (1.4.2)

which expresses z in two different ways as a sum of scalar multiples of u, v, and w,

respectively. The following definition provides vocabulary to describe computations like these.

v

u

z

w

Figure 1.2 Vectors in R
2 : u =

[

1
1

]

, v =

[

1
2

]

, w =

[

−1
2

]

, and z =

[

1
−1

]

.
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8 Vector Spaces

Definition 1.4.3 Let U be a nonempty subset of an F-vector space V . A linear combination

of elements of U is an expression of the form

c1v1 + c2v2 + · · · + crvr, (1.4.4)

in which r is a positive integer, v1, v2, . . . , vr ∈ U , and c1, c2, . . . , cr ∈ F. A linear combination

(1.4.4) is trivial if c1 = c2 = · · · = cr = 0; otherwise, it is nontrivial.

A linear combination is, by definition, a sum of finitely many scalar multiples of vectors.

For example, (1.4.1) shows that the vector z in Figure 1.2 is a linear combination of u, v, and

w; (1.4.2) expresses z as a different linear combination of these vectors.

Example 1.4.5 Every element of P is a linear combination of 1, z, z2, . . ..

Definition 1.4.6 A list of vectors in an F-vector space V is a nonempty finite sequence

β = v1, v2, . . . , vr of vectors in V . The vectors v1, v2, . . . , vr are the elements of the list β.

A nonzero list has at least one nonzero element. We often denote a list by a lowercase Greek

letter such as β or γ.

A subtle, but important, point is that a vector can appear more than once in a list. For

example, β = z, z2, z2, z2, z3 is a list of five vectors in P3. However, the set of vectors in

the list β is {z, z2, z3}. Sets do not have multiplicities; see Appendix C.1. Accounting for the

multiplicities of scalars and vectors is often important in linear algebra; lists help us do this.

A second important point is that order matters in a list. For example, β = z, z2, z3 and

γ = z3, z2, z are different lists of vectors in P3.

Definition 1.4.7 Let U be a subset of an F-vector space V . If U �= ∅, then spanU

is the set all of linear combinations of elements of U ; we define span∅ = {0}. If

β = v1, v2, . . . , vr is a list of vectors in V , we define span β = span{v1, v2, . . . , vr}, that is,

the span of a list is the span of the set of vectors in the list.

Suppose that a list of vectors β is obtained from a list γ by reordering its elements. The

commutativity of vector addition ensures that span β = span γ .

Example 1.4.8 If u ∈ V , then Theorem 1.3.3 ensures that span{u} = {cu : c ∈F} is a subspace

of V . In particular, span{0} = {0}.

Example 1.4.9 Let A = [a1 a2 . . . an] ∈Mm×n(F) (see (C.2.2) or (3.1.1) for this presentation

of a matrix, partitioned according to its columns) and consider the list β = a1, a2, . . . , an of

vectors in the F-vector space F
m. Then

span β = {x1a1 + x2a2 + · · · + xnan : x1, x2, . . . , xn ∈ F} = {Ax : x ∈ F
n} = col A,

that is, the span of the columns of a matrix is its column space. A vector y ∈ F
m is in the span

of the columns of A if and only if y = Ax for some x ∈ F
n.

The preceding example suggests a powerful result: an inclusion of column spaces is

equivalent to the existence of a certain matrix factorization.

Theorem 1.4.10 Let Y = [y1 y2 . . . yp] ∈Mm×p(F) and let A ∈Mm×n(F). Then col Y ⊆ col A

if and only if Y = AX for some X ∈ Mn×p(F).

Proof If col Y ⊆ col A, then each column of Y is in the column space of A. Example 1.4.9

ensures that each yj = Axj for some xj ∈ F
n. If we let X = [x1 x2 . . . xp], then

Y = [y1 y2 . . . yp] = [Ax1 Ax2 . . . Axp] = A[x1 x2 . . . xp] = AX.
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1.4 Linear Combinations, Lists, and Span 9

Conversely, if Y = AX, X ∈ Mn×p(F), and u ∈ col Y , then Example 1.4.9 tells us that u = Yv

for some v ∈ F
p. Consequently, u = Yv = AXv = A(Xv) ∈ col A, so col Y ⊆ col A.

Example 1.4.11 Let

A =

⎡

⎢

⎣

aT1
...

aTm

⎤

⎥

⎦
∈ Mm×n(F)

(see (C.2.3) or (3.1.11) for this presentation of a matrix, partitioned according to its rows). If

β = aT1 , aT2 , . . . , aTm, then

span β = {x1aT1 + x2aT2 + · · · + xmaTm : x1, x2, . . . , xm ∈ F} = {xTA : x ∈ F
m} = row A,

that is, the span of the rows of A is its row space. It can also be thought of as (the transpose

of) the span of the columns of AT.

Example 1.4.12 Consider the list β = z, z3 of elements of P3. Then span β = {c1z + c2z3 :

c1, c2 ∈ C} is a subspace of P3 because it is nonempty and

c(a1z + a2z3) + (b1z + b2z3) = (ca1 + b1)z + (ca2 + b2)z3

is a linear combination of vectors in the list β for all c, a1, a2, b1, b2 ∈ C.

The span of a subset of a vector space is always a subspace.

Theorem 1.4.13 Let U be a subset of an F-vector space V .

(a) span U is a subspace of V .

(b) U ⊆ span U .

(c) U = span U if and only if U is a subspace of V .

(d) span (span U ) = span U .

Proof First suppose that U = ∅. Then Definition 1.4.7 says that span∅ = {0}, which is

a subspace of V . The empty set is a subset of every set, so ∅ ⊂ {0} = span∅. Both impli-

cations in (c) are vacuous. For (d), we have span (span∅) = span{0} = {0} = span∅; see

Example 1.4.8.

Now suppose that U �= ∅. If u, v ∈ span U and c ∈ F, then each of u, v, cu, and cu + v

is a linear combination of elements of U , so each is in span U . Theorem 1.3.3 ensures that

span U is a subspace of V . The assertion in (b) follows from the fact that 1u = u is an

element of span U for each u ∈ U . To prove the two implications in (c), first suppose that

U = span U . Then (a) ensures that U is a subspace of V . Conversely, if U is a subspace

of V , then it is closed under vector addition and scalar multiplication, so span U ⊆ U . The

containment U ⊆ span U in (b) ensures that U = span U . The assertion in (d) follows

from (a) and (c).

Theorem 1.4.14 Let U and W be subsets of an F-vector space V . If U ⊆ W , then span U ⊆

span W .

Proof If U = ∅, then span U = {0} ⊆ span W . If U �= ∅, then every linear combination

of elements of U is a linear combination of elements of W .
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10 Vector Spaces

Example 1.4.15 Let U = {1, z − 2z2, z2 + 5z3, z3, 1 + 4z2}. We claim that span U = P3.

To verify this, observe that

1 = 1,

z = (z − 2z2) + 2(z2 + 5z3) − 10z3,

z2 = (z2 + 5z3) − 5z3, and

z3 = z3.

Thus, {1, z, z2, z3} ⊆ span U ⊆ P3. Now invoke the two preceding theorems, compute

P3 = span{1, z, z2, z3} ⊆ span (span U ) = span U ⊆ P3,

and conclude that span U = P3.

Definition 1.4.16 Let V be an F-vector space. Let U be a subset of V and let β be a list of

vectors in V . Then U spans V (U is a spanning set for V) if span U = V . The list β spans V

(β is a spanning list) if span β = V .

It is convenient to say that “v1, v2, . . . , vr span V” rather than “the list of vectors

v1, v2, . . . , vr spans V .” If a list of vectors in F
m is the list of columns of a matrix A ∈ Mm×n(F),

it is also convenient to say “the columns of A span V” rather than “the list of columns of A

span V .”

Example 1.4.17 Let B ∈Mn×p(F). The columns of B span F
n if and only if col B = F

n.

Example 1.4.18 Each of the sets {1, z, z2, z3} and {1, z − 2z2, z2 + 5z3, z3, 1 + 4z2} spans P3;

see Example 1.4.15.

Example 1.4.19 Let A = [a1 a2 . . . an] ∈ Mn(F) be invertible, let y ∈ F
n, and let A−1y =

[x1 x2 . . . xn]T. Then y = A(A−1y) = x1a1 + x2a2 + · · · + xnan is a linear combination of the

columns of A. We conclude that if A ∈ Mn(F) is invertible, then its columns span F
n.

Example 1.4.20 The identity matrix In is invertible and its columns are

e1 =

⎡

⎢

⎢

⎢

⎢

⎣

1

0
...

0

⎤

⎥

⎥

⎥

⎥

⎦

, e2 =

⎡

⎢

⎢

⎢

⎢

⎣

0

1
...

0

⎤

⎥

⎥

⎥

⎥

⎦

, . . . , en =

⎡

⎢

⎢

⎢

⎢

⎣

0

0
...

1

⎤

⎥

⎥

⎥

⎥

⎦

. (1.4.21)

Consequently, span{e1, e2, . . . , en} = F
n. Any u = [ui] ∈ F

n can be expressed as u = u1e1 +

u2e2 + · · · + unen. For example, the all-ones vector e ∈ F
n can be expressed as e = e1 + e2 +

· · · + en = [1 1 . . . 1]T.

Example 1.4.22 Consider the vectors u and v in Figure 1.2, and let A = [u v] =
[

1 1
1 2

]

.

A computation using (C.2.7) reveals that A−1 =
[

2 −1
−1 1

]

, so A is invertible. The preceding

example ensures that span{u, v} = R
2, so each vector in R

2 is a linear combination of u and v.

Equivalently, the system of linear equations Ax = y is consistent for each y ∈ R
2.

Example 1.4.23 Let A ∈ Mm×n(F) and B ∈ Mn×p(F). If the columns of B span F
n, then

Example 1.4.19 ensures that

col AB = {ABx : x ∈ F
p} = {Ay : y ∈ F

n} = col A.
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