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This first chapter briefly reviews how the field of machine learning has

evolved into a major discipline in computer science and engineering in

the past decades. Afterward, it takes a descriptive approach and provides

some simple examples to introduce basic concepts and general principles

in machine learning to give readers a big picture of machine learning, as

well as some general expectations on the topics that will be covered in this

book. Finally, this introductory chapter concludes with a list of advanced

topics in machine learning, which are currently pursued as active research

topics in the machine learning community.

1.1 What Is Machine Learning?

The term artificial intelligence (AI) was coined

at a workshop at Dartmouth College in

1956 by John McCarthy, who was an MIT

computer scientist and a founder of the

AI field.

Since its inception several decades ago, the digital computer has constantly

amazed us with its unprecedented capability for computation and data

storage. On the other hand, people are also extremely interested in investi-

gating the limits on what a computer is able to do beyond the basic skills

of computing and storing. The most interesting question along this line is

whether the human-made machinery of digital computers can perform

complex tasks that normally require human intelligence. For example,

can computers be taught to play complex board games like chess and Go,

transcribe and understand human speech, translate text documents from

one language to another, and autonomously operate cars? These research

pursuits have been normally categorized as a broad discipline in com-

puter science and engineering under the umbrella of artificial intelligence

(AI). However, artificial intelligence is a loosely defined term and is used

colloquially to describe computers that mimic cognitive functions associ-

ated with the human mind, such as learning, perception, reasoning, and

problem solving [207]. Traditionally, we tended to follow the same idea of

computer programming to tackle an AI task because it was believed that

we could write a large program to teach a computer to accomplish any

complex task. Roughly speaking, such a program is essentially composed

of a large number of "if-then" statements that are used to instruct the

computer to take certain actions under certain conditions. These if-then

statements are often called rules. All rules in an AI system are collectively

called a knowledge base because they are often handcrafted based on the

knowledge of human experts. Furthermore, some mathematical tools,

such as logic and graphs, can also be adopted into some AI systems as
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2 1 Introduction

more advanced methods for knowledge representation. Once the knowl-

edge base is established, some well-known search strategies can be used

to explore all available rules in the knowledge base to make decisions

for each observation. These methods are often called symbolic approaches

[207]. Symbolic approaches were dominant in the early stage of AI because

mathematically sound inference algorithms can be used to derive some

highly explainable results through a transparent decision process, such as

the expert systems popular in the 1970s and 1980s [110].

The key to the success of these knowledge-based (or rule-based) symbolic

approaches lies in how to construct all necessary rules in the knowledge

base. Unfortunately, this has turned out to be an insurmountable obstacle

for any realistic task. First of all, the process of explicitly articulating hu-

man knowledge using some well-formulated rules is not straightforward.

For example, when you see a picture of a cat, you can immediately rec-

ognize a cat, but it is difficult to express what rules you might have used

to make your judgment. Second, the real world is often so complicated

that it requires using an endless number of rules to cover all the different

conditions in any realistic scenario. Constructing these rules manually is

a tedious and daunting task. Third, even worse, as the number of rules

increases in the knowledge base, it becomes impossible to maintain them.

For example, some rules may contradict each other under some conditions,

and we often have no good ways to detect these contradictions in a large

knowledge base. Moreover, whenever we need to make an adjustment to a

particular rule, this change may affect many other rules, which are not easy

to identify as well. Fourth, rule-based symbolic systems do not know how

to make decisions based on partial information and often fail to handle

uncertainty in the decision-making process. As we know, neither partial

information nor uncertainty is a major hurdle in human intelligence.

The term machine learning was first coined

in a 1959 paper [212] by Arthur Samuel,

who was an IBM researcher and pioneer

in the field of AI.

On the other hand, an alternative approach toward AI is to design learning

algorithms by which computers can automatically improve their capabil-

ity on any particular AI task through experience [165]. The past experience

is fed to a learning algorithm as the so-called "training data" for the al-

gorithm to learn from. The design of these learning algorithms has been

motivated by different strategies, from biologically inspired learning ma-

chines [200, 206, 205] to probability-based statistical learning methods

[56, 9, 112, 38]. Since the 1980s, the study of these automatic learning

algorithms has quickly emerged as a prominent subfield in AI, under the

name machine learning. The nature of automatic learning prevents machine

learning from suffering the aforementioned drawbacks of the symbolic

approaches. As opposed to the knowledge-based symbolic approaches,

data-driven machine learning algorithms focus more on how to automat-

ically exploit the training data to build some mathematical models in

order to make decisions without having explicit programming to do so

[212]. With the help of machine learning algorithms, the major burden in
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1.1 Machine Learning 3

building an AI system has moved from the extremely challenging task

of manual knowledge representation to a relatively feasible procedure of

data collection. After initial success in some real-world AI applications

during the 1970s and 1980s (e.g., speech recognition [9, 112] and machine

translation [38]), a major paradigm shift occurred in the field of artificial

intelligence—namely, the data-driven machine learning methods have

replaced the traditional rule-based symbolic approaches to become the

mainstream methodology for AI. As the computation power of modern

computers constantly improves, machine learning has found a plethora of

relevant applications in almost all engineering domains and has made a

huge impact on our society.

Figure 1.1: An illustration of the pipeline
of building a machine learning system,
consisting of three major steps of data
collection, feature generation, and model
training.

A recent trend in machine learning is to re-

place the handcrafted features with some

automatic feature extraction algorithms.

The recent end-to-end learning tends to com-

bine the last two steps of feature extrac-

tion and modeling into a single uniform

module that can be jointly learned from

the training data. We will discuss the end-

to-end learning in Section 8.5.

As shown in Figure 1.1, the pipeline of building a successful machine

learning system normally consists of three key steps. In the first stage, we

need to collect a sufficient amount of training data to represent the previ-

ous experience from which computers can learn. Ideally, the training data

should be collected under the same conditions in which the system will

be eventually deployed. The data collected in this way are often called in-

domain data. Many learning algorithms also require human annotators to

manually label the data in such a way to facilitate the learning algorithms.

As a result, it is a fairly costly process to collect in-domain training data

in practice. However, the final performance of a machine learning system

in any practical task is largely determined by the amount of available in-

domain training data. In most cases, accessing more in-domain data is the

most effective way to boost performance for any real-world application.

In the second stage, we usually need to apply some domain-specific pro-

cedures to extract the so-called features out of the raw data. The features

should be compact but also retain the most important information in the

raw data. The feature-extraction procedures need to be manually designed

based on the nature of the data and the domain knowledge, and they often

vary from one domain to another. For example, a good feature to represent

speech signals should be derived based on our understanding of speech

itself, and it should drastically differ from a good feature to represent an

image. In the final stage, we choose a learning algorithm to build some

mathematical models from the extracted feature representations of the

training data. The machine learning research in the past few decades has

provided us with a wide range of choices in terms of which learning algo-

rithms to use and which models to build. The main purpose of this book is

to introduce different choices of machine learning methods in a systematic

way. Most of these learning methods are generic enough for a variety of
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4 1 Introduction

machine learning
input output

Figure 1.2: A system view of any machine
learning problem.

problems and applications, and they are usually independent of domain

knowledge. Therefore, most learning methods and their corresponding

models can be introduced in a general manner without restricting their

use to any particular application.

1.2 Basic Concepts in Machine Learning

In this section, we will use some simple examples to explain some common

terminology, as well as several basic concepts widely used in machine

learning.

Generally speaking, it is useful to take the system view of input and out-

put to examine any machine learning problem, as shown in Figure 1.2. For

any machine learning problem at hand, it is important to understand what

its input and output are, respectively. For example, in a speech-recognition

problem, the system’s input is speech signals captured by a microphone,

and the output is the words/sentences embedded in the signals. In an

English-to-French machine translation problem, the input is a text docu-

ment in English, and the output is the corresponding French translation.

In a self-driving problem, the input is the videos and signals of the sur-

rounding scenes of the car, captured by cameras and various sensors, and

the output is the control signals generated to guide the steering wheel and

brakes.

The system view in Figure 1.2 can also help us explain several popular

machine learning terminologies.

1.2.1 Classification versus Regression

Depending on the type of the system outputs, machine learning prob-

lems can be broken down into two major categories. If the output is

continuous—namely, it can take any real value within an interval—it is a

regression problem. On the other hand, if the output is discrete—namely,

it can only take a value out of a finite number of predefined choices—it

is said to be a classification problem. For instance, speech recognition is

a classification problem because the output must be constructed using a

finite number of words allowed in the language. On the other hand, image

generation is a regression problem because the pixels of an output image

can take any arbitrary values. It is fundamentally similar in principle to

solve classification and regression problems, but they often need slightly

different treatments in problem formulation.

In some machine learning problems, the

outputs are structured objects. These prob-

lems are referred to as structured learning

(a.k.a. structured prediction) [10]. Some ex-

amples are when the output is a binary

tree or a sentence following certain gram-

mar rules.
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1.2 Basic Concepts 5

1.2.2 Supervised versus Unsupervised Learning

As we know, all machine learning methods require collecting training

data in the first place. Supervised learning deals with those problems where

both the input and output shown in Figure 1.2 can be accessed in data

collection. In other words, the training data in supervised learning consist

of input–output pairs. For each input in the training data, we know its

corresponding output, which can be used to guide learning algorithms

as a supervision signal. Supervised learning methods are well studied in

machine learning and usually guarantee good performance, as long as

sufficient numbers of input–output pairs are available. However, collecting

the input–output pairs for supervised learning often requires human

annotation, which may be expensive in practice.

In contrast, unsupervised learning methods deal with the problems where

we can only access the input shown in Figure 1.2 when collecting the

training data. A good unsupervised learning algorithm should be able to

figure out some criteria to group similar inputs together using only the

information of all possible inputs, where two inputs are said to be similar

only when they are expected to yield the same output label. The funda-

mental difficulty in unsupervised learning lies in how to know which

inputs are similar when their output labels are unavailable. Unsupervised

learning is a much harder problem because of the lack of supervision infor-

mation. In unsupervised learning, it is usually cheaper to collect training

data because it does not require extra human efforts to label each input

with the corresponding output. However, unsupervised learning largely

remains an open problem in machine learning. We desperately need good

unsupervised learning strategies that can effectively learn from unlabeled

data.

In many circumstances, unsupervised learn-

ing is also called clustering [66].

In between these two extremes, we can combine a small amount of labeled

data with a large amount of unlabeled data during training. These learning

methods are often called semisupervised learning. In other cases, if the true

outputs shown in Figure 1.2 are too difficult or expensive to obtain, we can

use other readily available information, which is only partially relevant

to the true outputs, as some weak supervision signals in learning. These

methods are called weakly supervised learning.

We know that it is difficult and costly

to annotate the precise meaning of each

word in text documents. However, due to

the distribution hypothesis [91] in linguis-

tics (i.e., "words that are close in meaning

will occur in similar pieces of text"), the

surrounding words can be used as weak

supervision signals to learn the meanings

of words. See Example 7.3.2.

1.2.3 Simple versus Complex Models

In machine learning, we run learning algorithms over training data to

build some mathematical models for decision making. In terms of choos-

ing the specific model to be used in learning, we usually have to make a

sensible choice between simple models and complex models. The com-

plexity of a model depends on the functional form of the model as well
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6 1 Introduction

Figure 1.3: An illustration of a curve-
fitting problem, which can be viewed as a
regression problem in machine learning.

Figure 1.4: An illustration of using a lin-
ear model for the curve-fitting problem
shown in Figure 1.3.

as the number of free parameters. In general, linear models are treated as

simple models, whereas nonlinear models are viewed as complex models

because nonlinear models can capture much more complicated patterns

in data distributions than linear ones. A simple model requires much less

computing resources and can be reliably learned from a much smaller

training set. In many cases, we can derive a full theoretical analysis for

simple models, which gives us a better understanding of the underlying

learning process. However, the performance of simple models often satu-

rates quickly as more training data become available. In many practical

cases, simple models can only yield mediocre performance because they

fail to handle complicated patterns, which are the norm in almost all real-

world applications. On the other hand, complex models require much

more computing resources in learning, and we need to prepare much more

training data to reliably learn them. Due to their complex functional forms,

there does not exist any theoretical analysis for many complex models.

Hence, learning complex models is often a very awkward black-box pro-

cess and usually requires many inexplicable tricks to yield optimal results.

We will introduce linear models in Chap-

ter 6 and more complex models in Chap-

ter 8.

Example 1.2.1 Curve Fitting

There exists an unknown function y = f (x). Assume we can only ob-

serve its function values at several isolated points, indicated by blue

circles in Figure 1.3. Show how to determine its values for all other

points in the interval.

This is a standard curve-fitting problem in mathematics, which requires

constructing a curve, or mathematical function, to best fit these observed

points. From the perspective of machine learning, this curve-fitting prob-

lem is a regression problem because it requires us to estimate the function

value y, which is continuous, for any x in the interval. The observed points

serve as the training data for this regression problem. Because we can

access both input x and output y in the training data, it is a supervised

learning problem.

First of all, assume we construct a linear function for this problem:

f (x) = a0 + a1 x.

Through a learning process that determines the two unknown coefficients

(to be introduced in the later chapters), we can construct the best-fit linear

function in Figure 1.4. We can see that this best-fit linear function yields

values quite different from most of the observed points and has failed to

capture the "up-and-down wiggly pattern" shown in the training data.

This indicates that linear models may be too simple for this task. In fact,

this problem can be easily solved by choosing a more complex model. A
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1.2 Basic Concepts 7

Figure 1.5: An illustration of using a
fourth-order polynomial function for the
curve-fitting problem.

Figure 1.6: An illustration of using a deci-
sion tree to recognize various fruits based
on some measured features. (Source:
[57].)

natural choice here is to use a higher-order polynomial function. We can

choose a fourth-order polynomial function, as follows:

f (x) = a0 + a1 x + a2 x2
+ a3 x3

+ a4 x4.

After we determine all five unknown coefficients, we can find the best-fit

fourth-order polynomial function, as shown in Figure 1.5. From that, we

can see that this model captures the pattern in the data much better despite

still yielding slightly different values at the observed points. �

Example 1.2.2 Fruits Recognition

Assume we want to teach a computer to recognize different fruits based

on some observed characteristics, such as size, color, shape, and taste.

Consider a suitable model that can be used for this purpose.

This is a typical classification problem because the output is discrete: it

must be a known fruit (e.g., apple, grape). Among many choices, we can

implement the tree-structured model shown in Figure 1.6 for this clas-

sification problem. In this model, each internal node is associated with

a binary question regarding one aspect of the characteristics, and each

leaf node corresponds to one class of fruits. For each unknown object, the

decision process is simple: We start from the root node and ask the associ-

ated question for the unknown object. We then move down to a different

child node based on the answer to this question. This process is repeated

until a leaf node is reached. The class label of the reached leaf node is the

classification result for the unknown object. This model is normally called

a decision tree in the literature [34]. If this tree is manually constructed

according to human knowledge, it is just a convenient way to represent

various rules in a knowledge base. However, if we can automatically learn

such a tree model from training data, it is considered to be an interesting

method in machine learning, known as decision trees. � We will introduce various learning meth-

ods for decision trees in Chapter 9.

1.2.4 Parametric versus Nonparametric Models

When we choose a model for a machine learning problem, there are two

different types. The so-called parametric models (a.k.a. finite-dimensional mod-

els) are models that take a presumed functional form and are completely

determined by a fixed set of model parameters. In the previous curve-

fitting example, once we choose to use a linear model (or a fourth-order

polynomial model), it can be fully specified by two (or five) coefficients.

By definition, both linear and polynomial models are parametric models.

In contrast, the so-called nonparametric models (a.k.a. distribution-free models)

do not assume the functional form of the underlying model, and more

importantly, the complexity of such a model is not fixed and may depend
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on the available data. In other words, a nonparametric model cannot be

fully specified by a fixed number of parameters. For example, the decision

tree is a typical nonparametric model. When we use a decision tree, we

do not presume the functional form of the model, and the tree size is

usually not fixed as well. If we have more training data, it may allow us to

build a larger decision tree. Another well-known nonparametric model is

the histogram. When we use a histogram to estimate a data distribution,

we do not constrain the shape of the distribution, and the histogram can

dramatically change as more and more samples become available.

Generally speaking, it is easier to handle parametric models than non-

parametric models because we can always focus on estimating a fixed

set of parameters for any parametric model. Parameter estimation is al-

ways a much simpler problem than estimating an arbitrary model without

knowing of its form.

1.2.5 Overfitting versus Underfitting

Figure 1.7: An illustration of how data
can be conceptually viewed as being com-
posed of signal and noise components.

All machine learning methods rely on training data. Intuitively speaking,

training data contain the important information on certain regularities we

want to learn with a model, which we informally call the signal component.

On the other hand, training data also inevitably include some irrelevant

or even distracting information, called the noise component. A major

source of noise is the sampling variations exhibited in any finite set of

random samples. If we randomly draw some samples, even from the same

distribution, twice, we will not obtain identical samples. This variation

can be conceptually viewed as a noise component in the collected data.

Of course, noise may also come from measurement or recording errors.

In general, we can conceptually represent any collected training data as a

combination of two components:

data = signal + noise.

This decomposition concept is also illustrated in Figure 1.7, where we

can see that the signal component represents some regularities in the

data, whereas the noise component represents some unpredictable, highly

fluctuating residuals. Once we have this conceptual view in mind, we can

easily understand two important concepts in machine learning, namely,

underfitting and overfitting.

We will formally introduce the theory be-

hind overfitting in Chapter 5.
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1.2 Basic Concepts 9

Figure 1.8: An illustration of using a 10th-
order polynomial function for the pre-
vious curve-fitting problem. The best-fit
model behaves wildly because the over-
fitting happened in the learning process.

Assume we learn a simple model from a set of training data. If the used

model is too simple to capture all regularities in the signal component, the

learned model will yield very poor results even in the training data, not to

mention any unseen data, which is normally called underfitting. Figure 1.4

clearly shows an underfitting case, where a linear function is too simple

to capture the "up-and-down wiggly pattern" evident in the given data

points. On the other hand, if the used model is too complex, the learning

process may force a powerful model to perfectly fit the random noise

component while trying to catch the regularities in the signal component.

Moreover, perfectly fitting the noise component may obstruct the model

from capturing all regularities in the signal component because the highly

fluctuating noise can distract the learning outcome more when a complex

model is used. Even worse, it is useless to perfectly fit the noise component

because we will face a completely different noise component in another set

of data samples. This will lead to the notorious phenomenon of overfitting

in machine learning. Continuing with the curve fitting as an example,

assume that we use a 10th-order polynomial to fit the given data points

in Figure 1.3. After we learn all 11 coefficients, we can create the best-fit

10th-order polynomial model shown in Figure 1.8. As we can see, this

model perfectly fits all given training samples but behaves wildly. Our

intuition tells us that it yields a much poorer explanation of the data than

the model in Figure 1.5.

Figure 1.9: An illustration of underfitting
and overfitting in a binary classification
problem of two classes; the colors indicate
class labels.

Not limited to regression, underfitting and overfitting can also occur

in classification problems. In the simple classification problem of two

classes shown in Figure 1.9, if a simple model is used for learning, it

leads to a straight separation boundary between the two classes in the left

figure, indicating an underfitting case because many training samples are

located on the wrong side of the boundary. On the other hand, if we use a

complex model in learning, it may end up with the complicated separation

boundary shown in the middle figure. This implies an overfitting case

because this boundary perfectly separates all training samples but is not

a natural explanation of the data. Finally, among these three cases, the

model on the right seems to provide the best explanation of the data set.

We should avoid underfitting and overfitting as much as possible in any
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Figure 1.10: An illustration of high bias
errors versus high variances in machine
learning, where each square represents a
learned model from a random training
set, and the center of the circles indicates
the true regularities to be learned. (Im-
age credit: Sebastian Raschka/CC-BY-SA-
4.0.)

machine learning problem because they both hurt the learning perfor-

mance in one way or another. Underfitting occurs when the learning

performance is not satisfactory even in the training set. We can easily

get rid of the underfitting problem by increasing the model complexity

(i.e., either increasing the number of free parameters or changing to a

more complex model). On the other hand, we can identify the overfitting

problem if we notice a nearly perfect performance in the training set but a

fairly poor performance in another unseen evaluation set.We will formally discuss regularization in

Chapter 7.

Similarly, we

can mitigate overfitting in machine learning either by augmenting more

training data, or by reducing the model complexity, or by using so-called

regularization techniques during the learning process.

1.2.6 Bias–Variance Trade-Off

Generally speaking, the total expected error of a machine learning algo-

rithm on an unseen data set can be decomposed into the following two

sources:

◮ Bias due to underfitting:

The bias error quantifies the inability of a learned model to capture all

regularities in the signal component due to erroneous assumptions

in the used model. High biases indicate that the learned model

consistently misses some important regularities in the data because

of inherent weaknesses of the underlying method. As shown in

Figure 1.10, each red square conceptually indicates a learned model

obtained by running the same learning method on a random training

set of equal size. A high bias error implies that the learned model

yields a poor match with the regularities in the signal component

that are truly relevant to the learning goal.

◮ Variance due to overfitting:

Variance is the error arising from the learning sensitivity to small

fluctuations in the training data. In other words, variance quantifies

the overfitting error of a learning method when the learned model is

forced to mistakenly capture the randomness in the noise component.

As shown in Figure 1.10, when variance is high, all learning results

randomly deviate from the true target in a different way because

each training set contains a different noise component. High vari-

ance indicates that the learned model gives a weak match with the

regularities in the signal component as it randomly deviates from

the true learning target from one case to another.

In precise terms, we can show that the average error of a learning algo-

rithm can be mathematically decomposed as follows:

We will formally prove the bias and vari-

ance decomposition

error = bias2
+ variance.

in Example 2.2.2. learning error = bias2
+ variance
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