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Preface

Every practitioner of mathematics, pure or applied, could use some algebra. Algebra includes

an adherence to precise deinitions, a willingness to examine concrete problems through

meaningful abstractions, and a thirst for lucid proofs based on the axiomatic method.

Despite its challenges, algebra has for a long time now been a mainstay of the curriculum

in mathematics programs. Not to mention that some people are actually drawn to its puzzles

and surprises. Since Bartel Leendert van der Waerden’s seminal book Moderne Algebra was

published in 1930, a multitude of authors have offered their take on this subject. By means

of this book we hope to make our contribution.

Our book is intended for senior undergraduate students of modern abstract algebra. Those

more gifted in mathematics can well proit from it sooner. Beginning graduate students

who need a refresher could ind it useful as well. We expect that our reader comes with

a bit of exposure to rigorous proofs, some familiarity with the common language of

sets such as injective and surjective mappings, and some understanding of linear algebra

including such notions as inite-dimensional vector spaces, non-singular matrices, and linear

transformations.

In order for any mathematics book to be effective, it must be precise with the mathematics

but also approachable to the student. We have tried to meet this goal by walking a ine

line between proper mathematical formality and reader friendliness. We hope to have not

written too much, but also not too little. There seem to be two points of view regarding the

introduction of a concept. One is that the student should be gently exposed to motivating

examples irst. Another aims for eficiency, presenting the deinitions and theorems at the

outset. By and large we have taken a “deinitions irst – examples next” approach, thinking

that too much effort at motivation can in its own way be distracting. Yet we have tried not to

go overboard with this approach, and to offer motivating examples soon enough.

Obviously, the exercises are for learning. If the exercises in a book are too easy, the student

will not learn enough, and quickly become bored. If they are too hard, discouragement can

set in. We have decided to limit the number of exercises that are utterly routine. Yet once a

student has digested a section, the bulk of the exercises that follow it should be of reasonable

dificulty. Those exercises which might be considered hard are marked with an asterisk. In

the end, the dificulty of the exercises will depend on the preparation, skill and stamina of

the student.

Algebra now comprises several large areas andmany special topics within them. Thismakes

it challenging for authors to select which topics will meet the expectations of a broad segment

of algebra instructors, whose task it is to pick a book for their students. We structured our

xv

www.cambridge.org/9781108836654
www.cambridge.org


Cambridge University Press
978-1-108-83665-4 — Abstract Algebra
John W. Lawrence , Frank A. Zorzitto 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xvi Preface

book along the traditional lines of groups, rings, ields and Galois theory. For something

extra we offer an in depth discussion of modules over principal ideal domains and of Gröbner

bases, a subject which may be of interest to those who relish computing.

We open our bookwith a short discussion on the integers, primes and congruences, in order

to ensure the student sees the ways of algebra within a truly basic example. These matters are

treated in the spirit of a review, which could well be familiar to many a reader.

Our book more properly begins with Chapter 2 where we discuss groups, with an emphasis

on inite groups, using a well trodden approach. The symmetric group gets a careful discus-

sion. The fundamentals of Lagrange’s theorem (including the failure of its converse), normal

subgroups, homomorphisms, quotient groups, the irst isomorphism theorem, internal and

external products of groups, are covered along familiar lines. We close the chapter with a

proof of the structure theorem for inite abelian groups. Since by its very nature this will

demand a bit more of the student, we go at it with patience.

Chapter 3 focuses on group actions, orbits, stabilizers, some counting problems, the class

equation, and the substantial Sylow theory. We introduce semi-direct products as a way to

describe some groups. In anticipation of their use in Galois theory the chapter closes with

the basics about solvable groups. Even though this is primarily a book in pure mathematics,

we decided to close Chapter 3 with a discussion of the Enigma machine and how group

theory was used to break the Enigma code. This is an interesting story of how abstract algebra

inluenced history.

Chapters 4 and 5 are about rings, with commutative domains as the primary focus. In

Chapter 4 we cover the essential notions of units, zero divisors, ideals, integral domains,

quotient rings, homomorphisms, the irst isomorphism theorem, the correspondence theo-

rem, maximal and prime ideals, and fraction ields. We also offer a somewhat more leisurely

treatment of the notion of polynomials, which of course can be glossed over by those who feel

it might be unnecessary. Chapter 5 is about primes, unique factorization, Euclidean domains,

Gauss’ lemma, irreducibility of polynomials, and the Hilbert basis theorem for Noetherian

rings. We also introduce a souped up version of Eisenstein’s criterion, which can be used in

unexpected ways to compute degrees of ield extensions.

In Chapter 6 we cover algebraic ield extensions, splitting ields, separable polynomials,

and the Galois group. Here the reader will ind an unhurried treatment of the Galois

correspondence. Some of the more important applications of Galois theory are offered in

Chapter 7, including, of course, Galois’ contribution on the solvability of polynomial equa-

tions by radicals. There is also a comprehensive treatment of ruler and compass constructions,

which at one point uses a bit of Galois theory.

Chapter 8 deals with the structure theorem for initely generated modules over principal

ideal domains along with its application to the Jordan canonical form for matrices. Of course

it also applies to inite (and even initely generated) abelian groups, but that topic is dealt

with in Chapter 2. A small bit of redundancy is useful because not every student will get to

Chapter 8, and because students can beneit from seeing the same ideas more than once.
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Preface xvii

An expert may notice that our proofs of a few dificult points differ somewhat from the

mainstream. We hope that the reader will like the way we have organized this challenging

material.

Our treatment of Gröbner bases in Chapter 9 is more daring. We want to present the

concept of a Gröbner basis in the setting of abstract algebra. For this reason we open up

with a discussion of what we call a Gröbner domain. These can be seen as a generalization

of Euclidean domains, which permits division algorithms in a larger context. Even though

our chief example is the ring of polynomials in several variables over a ield, we try to remain

within the abstraction of Gröbner domains as much as possible.

Our closing Appendix A offers some informal set theory, including the equivalence of the

axiom of choice and Zorn’s lemma, a discussion of cardinality, and the use of these ideas to

build the algebraic closure of any ield. The preceding chapters do not make signiicant use of

Appendix A. The proof that rings have maximal ideals is the main (and easy) application of

Zorn’s lemma. The material of Appendix A is offered for the student who might ind it handy

to have it here, and might appreciate our effort to make this abstract material approachable.

The book contains more than enough material for two semesters of instruction. We ind it

dificult to advise how much is to be covered in a given semester. This is because the length

of a semester can differ across various jurisdictions, and also because classes can differ in

their abilities and institutions can differ in their expectations. In our home university in a

third year one semester course we typically would assume Chapter 1, and then cover much of

Chapters 2, 3, 4 and 5 on groups and rings, possibly skipping a few themes such as semi-

direct products, solvable groups, the Enigma machine, and irreducibility over Noetherian

domains. This would be followed up in a second semester with an in depth discussion of

ield and Galois theory including a discussion of solvable groups. If the class is up to it,

we might also treat Chapter 9 on Gröbner bases or possibly modules over principal ideal

domains.

Here are some suggested ways to use our book for a one semester course:

• Chapters 1, 2, 3 for a course on groups

• Chapters 1, 4, 5, 6, 7 for a substantial course on commutative rings, ields andGalois theory

• Chapters 1, 4, 5, 8 for a course on commutative rings and modules

• Chapters 1, 4, 5, 9 for a course on rings and division algorithms.

Some instructors believe it is better to teach commutative rings before groups. Even though

we have followed the common order of groups-rings-ields, an instructor who wishes to teach

rings irst should be able to jump into Chapter 4 from the get go. Our treatment of rings

makes a small use of the basic facts about groups, but the very slight amount of group theory

needed can readily be illed in by the instructor.

The book can also be used in algebra courses of a more general nature. We have tried to

adopt a style that is student friendly by explaining the ideas and proofs in a detailed and self

contained manner.
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xviii Preface

One irritant which we have tried to minimize is the somewhat distracting practice of

referring to exercises or to other proofs within the proof of a result. Another distracting

habit is to leave steps within a proof as an exercise. Of course this is deemed to encourage the

student to work through some details. It can also be a relection of an author’s impatience.

These features cannot be avoided entirely, but by proving virtually everything we claim at the

moment we claim it, we think that reading our text will lead to a more seamless experience.

Our gratitude goes out to our Pure Mathematics Department at the University of Waterloo,

which gave us the opportunity to teach courses in algebra and thereby come to appreciate

whatmight be interesting, whatmight be important, andwhatmight be fun. Our never ending

streams of committed and often brilliant students taught us that algebra can be a pleasure to

learn and to teach.
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