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1 A Refresher on the Integers

A good place to start might be the set of integers:

Z = {0,±1,±2,±3, . . .}.

We often encounter the notation N for the set of natural numbers. There seems to be no

consensus on whether to include 0 as a natural number. Following the advice of Paul Halmos

(1916–2006) in his seminal book Naive Set Theory, irst published in 1960, we shall include

0 as a natural number. Thus N stands for the set {0,1,2,3, . . .}. We will on occasion use the

somewhat less common notation P for the set {1,2,3, . . .} of positive integers. Often we shall

prefer to say things like “let x be a positive integer,” instead of “let x ∈ P.”

1.1 Euclidean Division and the Greatest Common Divisor

In the seventh book of Euclid we are told that any integer b, upon division by a positive

integer a, yields a unique quotient q and a unique remainder r such that

b = aq+ r and 0 ≤ r < a.

Indeed, q is the largest integer that is less than or equal to the fraction b/a, and r is simply

b− aq. The procurement of q and r will be called Euclidean division.

If the remainder r = 0, then b = aq. In this case we say that a divides b, and write a |b. For

instance, 17 |51 since 51 = 17 · 3. Conversely, a bit of relection shows that if r �= 0, then a ∤b.

For example, the Euclidean division

−91 = 17 · (−6) + 11 where 0 < 11 < 17,

reveals that 17 does not divide −91. For visual clarity we may, on occasion just as above, use

a dot to signify multiplication.

When a |b, we say that b is a multiple of a, and also that a is a divisor or factor of b. Here

are a few simple things to note.

• If a |b and b |c, then a |c.

• If a |b and a |c and x,y are any integers, then a |bx+ cy.

• If b �= 0 and a |b, then |a| ≤ |b|.

• If a |b and b |a, then a = ±b.
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2 A Refresher on the Integers

The Greatest Common Divisor of Two Integers

If a,b are integers, an integer combination of a and b is any integer c built up as

c = ax+ by for some integers x,y.

For example, the equation 6 · (−3) + 4 · 7 = 10 reveals that 10 is an integer combination of

6 and 4. But 11 is not an integer combination of 6 and 4, because integer combinations of

6 and 4 have to be even integers. We might note that the same integer combination c could

be formed as an integer combination of a and b in more than one way. For example 10 also

equals 6 · 1 + 4 · 1.

If a,b are integers which are not both 0, then there do exist integer combinations of a and

b which are positive. For instance a · a + b · b = a2 + b2 > 0. Hence there exist integers s,t

which cause as+ bt to be minimal among the positive, integer combinations of a and b.

Now comes a noteworthy result.

Proposition 1.1 (Greatest common divisor). Let a,b be integers, and suppose at least one of them

is not 0. If an integer d satisies any one of the following properties, then d satisies them all.

1. d is the least among the positive, integer combinations of a and b.

2. d is a positive, integer combination of a and b, and d divides every integer combination of

a and b.

3. d is a positive, common divisor of a and b, and every common divisor of a and b is a divisor

of d.

4. d is the largest among the numbers that divide both a and b.

Proof. We will prove that 1 �⇒ 2 �⇒ 3 �⇒ 4 �⇒ 1.

1 �⇒ 2. Let d = as+bt be that positive integer combination of a and bwhich is minimal,

and let c = ax+by represent any integer combination of a and b. By Euclidean division there

exist integers q,r such that

c = dq+ r where 0 ≤ r < d.

And so

r = c− dq = ax+ by− (as+ bt)q = a(x− sq) + b(y− tq),

which is evidently another integer combination of a and b. By the minimality of d, the non-

negative remainder r cannot be positive. Thus r = 0, which gives d |c.

2 �⇒ 3. We have that 0 < d = ax + by for some integers x,y and d divides every

integer combination of a and b. Thereby d is a common divisor of a and b, because a and b

are themselves integer combinations of a and b. Also if c is another common divisor of a and

b, then c |ax+ by too. So c |d.

3 �⇒ 4. By assumption every common divisor c of a and b is a divisor of d, and d > 0.

Clearly then d ≥ c.

4 �⇒ 1. By the proven implications 1 �⇒ 2 �⇒ 3 �⇒ 4 the unique least, positive,

integer combination of a and b is the largest integer that divides both a and b. To repeat,
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1.1 Euclidean Division and the Greatest Common Divisor 3

the largest integer that divides both a and b is the least, positive, integer combination of

a and b. �

Deinition 1.2. The number d that satisies any one, and thereby all, of the conditions of

Proposition 1.1 is called the greatest common divisor of a and b. We write that positive

integer as

gcd(a,b).

What should gcd(0,0) be? Well, since the greatest common divisor should be an integer

combination of a and b, it makes sense to say that gcd(0,0) = 0, because that is the only

possible integer combination of 0 and 0. The choice gcd(0,0) = 0 is further justiied by the

fact that 0 is the only divisor of 0, which is also divisible by all other divisors of 0.

The Euclidean Algorithm

For pairs of small integers, their greatest common divisor can be seen by inspection. For

instance, gcd(42,30) = 6. When the integers become large, there is an eficient technique for

inding their greatest common divisor, based on repeated use of Euclidean division. Clearly,

gcd(a,b) = gcd(b,a) = gcd(±a, ± b), gcd(0,b) = |b| and gcd(b,b) = |b|.

Thus, for the purpose of computing greatest common divisors of a and b, we need only

consider the situation where 0 < a < b.

If a,b are not both 0 and b = aq + r for some integers q,r, one can see that the set of

common divisors of b and a is the same as the set of common divisors of a and r. Therefore

gcd(b,a) = gcd(a,r).

The preceding remark points the way for Euclidean division to ind gcd(b,a).

Say 0 < a < b. Apply Euclidean division repeatedly as follows:

b = aq1 + r1 0 < r1 < a

a = r1q2 + r2 0 < r2 < r1

r1 = r2q3 + r3 0 < r3 < r2

r2 = r3q4 + r4 0 < r4 < r3,

to obtain strictly decreasing remainders r1 > r2 > r3 > · · · ≥ 0.

Sooner or later an integer remainder becomes 0. In other words, there must be an index n

such that

rn−3 = rn−2qn−1 + rn−1 0 < rn−1 < rn−2

rn−2 = rn−1qn + rn 0 < rn < rn−1

rn−1 = rnqn+1 + 0 0 = rn+1.
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4 A Refresher on the Integers

From the remark preceding the above algorithm:

rn = gcd(rn,0) = gcd(rn−1,rn) = gcd(rn−2,rn−1) = · · ·

= gcd(r3,r4) = gcd(r2,r3) = gcd(r1,r2) = gcd(a,r1) = gcd(b,a).

The last positive remainder rn equals gcd(b,a). This famous process for obtaining greatest

common divisors is called the Euclidean algorithm.

For example, here comes gcd(8316,4641):

8316 = 4641 · 1 + 3675

4641 = 3675 · 1 + 966

3675 = 966 · 3 + 777

966 = 777 · 1 + 189

777 = 189 · 4 + 21

189 = 21 · 9 + 0.

Thus, gcd(8316,4641) = 21.

Roughly, the number of steps in the Euclidean algorithm is nomore than twice the base-two

logarithm of b. Consequently, it comes as no surprise that machines can rapidly implement

the Euclidean algorithm for enormous integers with hundreds of digits.

According to Proposition 1.1, gcd(a,b) = ax+by for some integers x,y. Inside theEuclidean

algorithm lies the method of obtaining such x,y. It is a matter of backtracking up along

the algorithm. For instance, in the preceding worked example:

gcd(8316,4641) = 21

= 777 · 1 − 189 · 4

= 777 · 1 − (966 − 777 · 1) · 4

= 777 · 5 − 966 · 4

= (3675 − 966 · 3) · 5 − 966 · 4

= 3675 · 5 − 966 · 19

= 3675 · 5 − (4641 − 3675 · 1) · 19

= 3675 · 24 − 4641 · 19

= (8316 − 4641 · 1) · 24 − 4641 · 19

= 8316 · 24 − 4641 · 43.

Thus, gcd(8316,4641) = 8316x+ 4641y where x = 24 and y = −43.

Calculations such as these can of course be done by machine when the integers in question

are big.
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1.1 Euclidean Division and the Greatest Common Divisor 5

Coprime Integers

Deinition 1.3. If the greatest common divisor of integers a and b equals 1, we say that a,b

are coprime.

Evidently, two integers are coprime if and only if their only common divisors are ±1. In

accordance with Proposition 1.1, a,b are coprime precisely when

ax+ by = 1

for some integers x,y. A couple of properties stand out for pairs of coprime integers.

Proposition 1.4. If a,b,c are integers and a,b are coprime and a |bc, then a |c.

Proof. We know that ax+ by = 1 for some integers x,y. Then acx+ bcy = c. Since a |bc and

evidently a |ac, it follows that a |acx+ bcy = c. �

Proposition 1.5. If a,b,c are integers and a |c and b |c, then ab |c.

Proof. We know that ax+ by = 1 for some integers x,y. Then acx+ cby = c. Since b |c, it is

clear that ab |ac, and likewise ab |cb because a |c. So, ab |acx+ cby = c. �

EXERCISES

1. Use the Euclidean algorithm to ind gcd(3150,3003) and express this greatest common

divisor as an integer combination of 3150 and 3003.

2. Using your favorite software, write a program to calculate the greatest common divisor

of two integers by means of the Euclidean algorithm, and to express the greatest

common divisor as an integer combination of the integers. By using your program, or

otherwise, ind gcd(2452548,2943234) and express this greatest common divisor as an

integer combination of the given integers.

3. These exercises can be done by using Proposition 1.1.

(a) If a,b are non-zero integers and k is any integer, show that gcd(ka,kb) = k gcd(a,b).

(b) If a,b are non-zero integers and k is a positive integer, show that gcd(a + kb,b) =

gcd(a,b).

(c) If a |bc, show that a |b gcd(a,c).

(d) If a,b are coprime integers and c |at and c |bt, show that c | t.

(e) If a,b,c are integers with a,c coprime, prove that gcd(ab,c) = gcd(b,c).

(f) If a,b are each coprime with c, show that ab is coprime with c.

4. If a,b,c are integers with a,b non-zero, show that the equation ax + by = c has integer

solutions x,y if and only if gcd(a,b) |c.

Find an integer solution x,y to the equation 91x+ 55y = 12.

5. Show that 1 is the only complex number which satisies both equations x245 = 1 and

x297 = 1.

6. Let a,b be positive integers. Let g = gcd(a,b) and ℓ = ab/g.

(a) Explain very briely why a |ℓ and b |ℓ. Thus ℓ is a common multiple of a and b.
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6 A Refresher on the Integers

(b) It turns out that ℓ is the least common multiple of a and b. Prove this claim by showing

that if a positive integer m is a common multiple of a and b, then ℓ |m.

Hint. To get from a | m,b | m to ℓ | m, it sufices to show that ab | mg. Use

Proposition 1.1.

Typically ℓ is written as lcm(a,b), and we have the identity

ab = gcd(a,b) lcm(a,b).

7. One might wonder about the eficiency of the Euclidean algorithm. Suppose a,b are

integers such that 0 < a < b, and that the Euclidean algorithm is applied to obtain

gcd(a,b). By inspecting the algorithm one can see that each line of the algorithm consists

of one Euclidean division, that there is a total of n+ 1 lines, and that gcd(a,b) appears on

the nth line as rn. We ask ourselves: how big could n get in terms of b?

(a) If 0 < a < b and b = aq + r for a quotient q and remainder r with 0 ≤ r < a, show

that q ≥ 1, and then r < b/2.

(b) Suppose that r1,r2,r3, . . . ,rn are the positive strictly decreasing remainders which

appear in the Euclidean algorithm used to obtain rn as gcd(a,b).

If n is even, explain how the following inequalities emerge:

r2 <
b

2
, r4 <

b

22
, r6 <

b

23
, . . . , rn <

b

2n/2
.

If n is odd, explain how the following inequalities emerge:

r1 <
b

2
, r3 <

b

22
, r5 <

b

23
, . . . , rn <

b

2(n+1)/2
<

b

2n/2
.

(c) If gcd(a,b) appears as rn on the nth line of the Euclidean algorithm, use the fact 1 ≤ rn

to deduce that 2n/2 < b, and then n < 2 log2(b).

Since line n + 1 with a zero remainder is needed to terminate the Euclidean

algorithm, we learn that the number of Euclidean divisions used in the Euclidean

algorithm to compute gcd(a,b) is at most

1 + 2 log2(b).

(d) If a,b are positive integers of size at most 987654321234567, show that the Euclidean

algorithm will compute gcd(a,b) in no more than 100 lines.

If a,b are positive integers of size at most 2500, show that the Euclidean algorithm

will compute gcd(a,b) in at most 1000 lines.

Despite such enormous possibilities, that is not a lot of lines for a computer

program to execute.

8. Suppose that a,b,c are integers and that the only factors common to all three are±1. Show

that there exist integers x,y,z such that ax+ by+ cz = 1.

Generalize this to a statement about any number of integers a1,a2, . . . ,an.
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1.2 Primes and Unique Factorization 7

1.2 Primes and Unique Factorization

Problems in Z invariably boil down to problems about primes.

Deinition 1.6. An integer p is called prime when p �= 0,1, − 1 and the only divisors of p are

±1 and ±p. An integer n other than 0,1, − 1 and such that n has a divisor in addition to

±1, ± n is called composite.

Since p is prime whenever its negative is prime, attention is normally restricted to the

positive primes, which, at a negligible loss of precision, tend to be called “prime” without

the speciication of positivity. Here are the primes up to 101:

2 3 5 7 11 13 17 19 23 29 31 37 41

43 47 53 59 61 67 71 73 79 83 89 97 101

With bigger integers it is no longer that easy to pick out primes. For example, a naive guess

might be that 91 is prime, but 91 = 13· 7.

Although we might feel conident that there are ininitely many primes, this is not obvious.

But irst comes a result which points to the importance of primes.

Proposition 1.7. If n is an integer and n ≥ 2, then n can be factored into primes.

Proof. Use induction on n.

If n = 2, then n is factored as itself into primes. Suppose 2,3,4, . . . ,n − 1 can each be

factored into primes. Now look at n. If n is prime, then n is a product of primes, namely itself.

If n is composite, write n = kℓ, where 1 < k < n and 1 < ℓ < n. Since k,ℓ are among the

integers 2,3,4, . . . ,n− 1, each of them factors into primes. That is,

k = p1 · p2 · · · pr and ℓ = q1 · q2 · · · qs, where the pj, qj are primes.

Then of course, the equations

n = kℓ = p1 · · · pr· q1 · · · qs

give a factorization of n into primes. �

From the above comes a famous theorem already in Euclid’s books.

Proposition 1.8. There are ininitely many primes.

Proof. Given any inite list of primes p1, p2, . . . ,pn, here is how to come up with one more

prime not on the list. Let

n = p1· p2 · · · pn + 1.

According to Proposition 1.7, n has a prime factor q. This q cannot be equal to any p1, . . . ,pn.

Indeed, if q equalled some pj, then

q would divide n− p1 · p2 · · · pn, which equals 1.
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8 A Refresher on the Integers

Since no prime is a factor of 1, our q is a prime not equal to any of p1,p2, . . . ,pn. This permits

the build-up of new primes at will. �

Unique Factorization

The special thing about primes is that there is only one way to factor an integer into primes.

Ambiguous factorings such as

24 = 6· 4 = 8· 3 = 1 · 1 · 12 · 2

do not occurwhen only primes are involved in the factors.Despite one’s sense that such unique

factorization must be true, this is not obvious.

It is worth noting that

an integer a is coprime with a prime p if and only if p ∤a.

Indeed, if p | a, then gcd(p,a) = p �= 1. Conversely, if d = gcd(p,a) and d �= 1, then the fact

d |p forces d = p, and then d |a.

The next result forms the cornerstone for the proof of unique factorization.

Proposition 1.9. An integer p, other than 0, ±1, is prime if and only if it has the property that

whenever p divides a product ab, then p already divides a or b.

Proof. Say p is prime and p | ab, and suppose p ∤ a. As observed, p and a are coprime. By

Proposition 1.4 it follows that p |b.

For the converse, suppose that p divides a factor whenever p divides the product of two

integers. Now let a be a factor of p. Thus p = ab for some other integer b. Clearly p |ab, and

thus p |a or p |b. If p |a, then the fact a |p yields a = ±p. If p |b, write b = qp for some integer

q. Then p = ab = aqp. Cancel p to get aq = 1, and from that a = ±1. So, the only possible

factors of p are ±p and ±1. �

A strong case can be made that the alternative property in Proposition 1.9 ought to be

taken as the deinition of a prime number. Indeed, this is what makes the proof of unique

factorization work.

Proposition 1.9 readily extends to the product of several integers. Namely, if a prime p

divides the product a1a2a3 · · · ak, then p already divides at least one of the aj. The proof

to follow, that factorization of integers into primes is unique, rests on the shoulders of

Proposition 1.9.

Proposition 1.10. If p1,p2, . . . , pn and q1,q2, . . . ,qm are two lists of primes (positive) with

repetitions allowed, and if

p1 · p2 · · · pn = q1 · q2 · · · qm,

then, after a rearrangement of the qj, the lists are identical. That is

m = n and p1 = q1, p2 = q2, . . . , pn = qn.
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1.2 Primes and Unique Factorization 9

Proof. Clearly p1 |q1· q2 · · · qm. By Proposition 1.9, p1 divides some qj. Rearrange the qj, and

say p1 | q1. Since q1 is prime, p1 = 1 or p1 = q1. The irst option cannot hold because p1 is

prime. Thus p1 = q1, and then

p1 · p2 · · · pn = p1 · q2 · · · qm.

Cancel p1 to get

p2· p3 · · · pn = q2· q3 · · · qm.

Repeat the argument, with the necessary rearrangement of the qj, to get p2 = q2, and then

p3· p4 · · · pn = q3· q4 · · · qm.

Continuing in this fashion, after suitable rearrangement of the qj, we end up with one of the

following possibilities:

• n < m, and p1 = q1, . . . , pn = qn, 1 = qm−n · · · qm
• m < n, and p1 = q1, . . . , pm = qm, pn−m · · · pn = 1

• m = n, and p1 = q1, . . . , pn = qn.

The irst two situations cannot happen, since only ±1 can be factors of 1 and the pj, qj are

not ±1. So indeed, m = n and all pj = qj, after some rearranging of the qj. �

The Multiplicity of a Prime inside an Integer

It is customary to collect repeated primes in the unique factorization of a positive integer a

as follows:

a = p
e1
1 · p

e2
2 · · · p

en
n ,

where pj are now distinct primes and the exponents ej ≥ 1.

Deinition 1.11. The unique number of times ej in which a prime appears in the unique

factorization of a non-zero integer a is called the multiplicity of pj inside a. It is convenient

to allow multiplicities to equal 0. A prime p has multiplicity 0 in a when p ∤a.

For example, with

a = 23 · 30 · 51 · 118 · 290,

the primes 3 and 29 have multiplicity 0 in a, while the multiplicity of 11 in a is 8.

Proposition 1.10 is saying that for every positive integer a and every prime p, there is a

unique non-negative multiplicity of p in a. Denote this multiplicity by ma(p). For example,

m320(2) = 6 because 320 = 26· 51, while m320(7) = 0.

For each positive a, the function p �→ ma(p) from the set of primes to the set of non-

negative integers counts the number of times that each prime p appears in the unique

factorization of a.
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10 A Refresher on the Integers

Here are a few observations about the multiplicity function. If a,b are positive integers,

then

• mab(p) = ma(p) +mb(p),

• ma(p) > 0 for at most initely primes p,

• ma(p) = mb(p) for all primes p if and only if a = b,

• ma(p) = 0 for all primes p if and only if a = 1.

• If m is a function deined on the set of primes with values in the set of non-negative integers,

and if m(p) > 0 for at most a inite number of primes p, then there is a unique positive

integer a such that m(p) = ma(p) for all primes p. Indeed, if p1,p2, . . . ,pn are the distinct

primes at which m(pj) > 0, the required a is given by

a = p
m(p1)
1 p

m(p2)
2 p

m(p3)
3 · · · p

m(pn)
n .

Divisibility and Unique Factorization

The notion of divisibility its nicely into the language of multiplicities.

Proposition 1.12. A positive integer a divides another positive integer b if and only if ma(p) ≤

mb(p) for every prime p.

Proof. Suppose a |b. That is, b = ac for some c. Then

mb(p) = mac(p) = ma(p) +mc(p) for all primes p.

Clearly ma(p) ≤ mb(p), because mc(p) ≥ 0.

Conversely, suppose ma(p) ≤ mb(p) for all primes p. For each such prime, let m(p) =

mb(p) − ma(p). Since m(p) ≥ 0 for all primes p and m(p) > 0 for at most a inite number

of primes, let c be the unique positive integer that has m as its multiplicity function, i.e.

m(p) = mc(p). Then

mac(p) = ma(p) +mc(p) = ma(p) +m(p) = ma(p) +mb(p) −ma(p) = mb(p)

for all primes p. It follows that ac = b, in other words a |b. �

Greatest Common Divisors in Terms of Multiplicity Functions

The greatest common divisor of two positive integers can be expressed in terms of the

multiplicity function that arises from unique factorization.

Proposition 1.13. If a,b are positive integers, then gcd(a,b) is the positive integer c whose

multiplicity function is given by

mc(p) = min (ma(p),mb(p)) for all primes p.
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