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Introduction

Consider an array1 of complex numbers
{

ar : r ∈ Nd
}

:=
{

ar1,...,rd
: r1, . . . , rd ∈ N

}

where, as in the rest of this book, we include zero in the set N = {0, 1, 2, . . .}.
The numbers ar usually come with a story – a reason they are interesting.

Often, they count a class of objects parametrized by r. For example, it could

be that ar is the multinomial coefficient ar =

( |r|
r1 ··· rd

)

, in which case ar counts

sequences of elements in {1, . . . , d} with r1 occurrences of 1, r2 occurrences

of 2, and so forth up to rd occurrences of the symbol d. Another frequent

source of these arrays is probability theory, where the numbers ar ∈ [0, 1]

are probabilities of events parametrized by r. For example, ars might be the

probability that a simple random walk of r steps in {−1, 1} ends at the integer

point s.

Definition 1.1 (running notation). Throughout this text we use d to denote

the dimension of an arbitrary array, and often employ r, s, and t as synonyms

for r1, r2, and r3, respectively, so as to avoid subscripts in low-dimensional

examples. We also use the notation |r| :=
∑d

j=1 |r j| for any vector r, which

helps us normalize in a way convenient for combinatorial examples.

How might one understand an array of numbers? In some cases there may

be a simple explicit formula, for instance the multinomial coefficients are given

by a ratio of factorials. When a formula of such brevity exists, we don’t need

fancy techniques to describe the array. Unfortunately, this rarely happens. Of-

ten, if a formula exists at all, it will not be in closed form but will include in-

definite summation. As Stanley [Sta97, Ex.1.1.4] notes in his foundational text

on enumeration, “There are actually formulas in the literature (nameless here

1 To simplify our presentation in this introduction we consider arrays indexed by vectors of
natural numbers, while later in the text we generalize to arrays indexed by integer vectors.
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4 Introduction

forevermore) for certain counting functions whose evaluation requires listing

all of the objects being counted! Such a ‘formula’ is completely worthless.”

Less egregious are the formulae containing functions that are rare or compli-

cated and whose properties are not immediately familiar to us. It is not clear

how much good comes from this kind of formula.

Another way of describing arrays of numbers is via recursions. The simplest

examples are finite linear recurrences, such as the recurrence ar,s = ar−1,s +

ar,s−1 for the binomial coefficients ar,s =

(

r+s

r

)

. A recursion for ar in terms of

values {as : s ≺ r} whose indices precede r in the coordinatewise partial order

may be unwieldy, perhaps requiring evaluation of a complicated function of all

as with s ≺ r, but if the recursion is of bounded complexity then it can give an

efficient algorithm for computing ar . Still, we will see that even in the case of

simple recursions the estimation of ar may not be straightforward. Thus, while

we look for recursions to help us understand number arrays, and for efficient

methods of computation, they rarely provide definitive descriptions.

A third way of understanding an array of numbers is via an estimate. For

instance, Stirling’s formula, which approximates

n! ≈ nn

en

√
2πn

for large n, yields an approximation

(

r + s

r

)

≈
(

r + s

r

)r ( r + s

s

)s
√

r + s

2πrs
(1.1)

for the binomial coefficients when r and s are large. If number-theoretic prop-

erties of the binomial coefficients are required then we are better off sticking

with a ratio of factorials; when their approximate size is paramount, the esti-

mate (1.1) is better.

A fourth way to understand an array of numbers is to encode it algebraically.

The generating function (often abbreviated GF) of the array {ar} is the formal

series F(z) :=
∑

r∈Nd arz
r . Here z is a d-dimensional vector of indeterminates

(z1, . . . , zd) and we use the notation z
r := z

r1

1
· · · zrd

d
. In our running example of

multinomial coefficients, we have the generating function

F(z) =
∑

r∈Nd

(

|r|
r1 · · · rd

)

z
r1

1
· · · zrd

d
=

1

1 − z1 − · · · − zd

,

where the final expression can be viewed either as a multiplicative inverse

in a formal power series ring, or as an analytic function over an appropriate

domain of Cd. Stanley calls the generating function “the most useful but the

most difficult to understand” method for describing a sequence or array.
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1.1 Generating functions and asymptotics 5

The algebraic form of a generating function is intimately related to recur-

sions – and exact formulae – for its coefficient sequence ar , as well as combi-

natorial decompositions for the objects enumerated by ar . In a complementary

manner, the analytic properties of a generating function correspond to esti-

mates of ar .

1.1 Generating functions and asymptotics

In this text we are chiefly concerned with the asymptotic behavior of ar as

r → ∞ in certain directions. To discuss the behavior of sequences as their

indices go off to infinity, we introduce some standard asymptotic notation.

Definition 1.2 (asymptotic notation). If f and g are real-valued functions then

we write

• f = O(g) if and only if lim sup
x→x0

| f (x)/g(x)| < ∞,

• f = o(g) if and only if lim
x→x0

f (x)/g(x) = 0,

• f ∼ g if and only if lim
x→x0

f (x)/g(x) = 1,

• f = Ω(g) when g = O( f ), and

• f = Θ(g) when both f = O(g) and g = O( f ),

for some value x0 understood in context, typically 0 or +∞.

As n → ∞ the function f (n) is said to be rapidly decreasing if f (n) =

O
(

n−K
)

for every K > 0, exponentially decaying if f (n) = O(e−cn) for some

c > 0, and super-exponentially decaying if f (n) = O(e−cn) for every c > 0.

Remark. An alternative definition is that f = O(g) when there exists C > 0

and an open neighborhood N of x such that f (x) ≤ Cg(x) for all x ∈ N. In this

case C is called an implied constant. One may increase C and decrease N and

still maintain the inequality, so implied constants are not unique, even if they

are chosen to give a tight inequality.

Example 1.3. As n→ ∞ the function f (n) = 1/n! decays super-exponentially,

while 2−n decays exponentially and e−
√

n approaches zero but does not decay

exponentially. /

An asymptotic scale is a sequence {g j : j ∈ N} of functions satisfying g j+1 =

o(g j) for all j ≥ 0. An asymptotic expansion (also called asymptotic series or

asymptotic development)

f ≈
∞
∑

j=0

c jg j
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6 Introduction

for a function f in terms of an asymptotic scale {g j : j ∈ N} and constants

c j ∈ C is said to hold if

f −
M−1
∑

j=0

c jg j = O(gM) (1.2)

for every M ≥ 1.

Remark. It is possible that c j = 0 for all j. For example, this will happen if

g j(n) = n− j and f is exponentially decaying. In this case there is no leading

term in the expansion. Otherwise, the leading term of an asymptotic expan-

sion is the first non-zero term ckgk in the expansion.

Example 1.4. Stirling’s famous approximation to the factorial can be refined

to give an asymptotic series

n! ≈
(

n

e

)n √
2πn

∑

`≥0

c`n
−`

with coefficient sequence {c`} beginning 1, 1/12, 1/288,−139/51840, . . . . /

Example 1.5. Let f ∈ C∞(R) be a smooth real function defined on a neighbor-

hood of zero, so that cn = f (n)(0)/n! is the nth term in its Taylor expansion. If f

is not analytic then this expansion may not converge to f , and may even diverge

for all non-zero x, but Taylor’s Theorem with remainder always implies

f (x) =

M−1
∑

n=0

cnxn
+ cMξ

M

for some ξ > 0 bounded close to the origin. This proves that

f ≈
∑

n≥0

cnxn

is always an asymptotic expansion for f near zero. /

Remark. Following Poincaré, many authors use the symbol ∼ to denote both

asymptotic equivalence of functions and asymptotic series expansions. How-

ever, this overloading of notation can lead to inconsistencies. We thus follow

texts such as [dBru81] in using ≈ for asymptotic expansions.

Exercise 1.1. Let f (x) = ex. Prove that f (x) ∼ 1 as x → 0 but f (x) 6≈ 1 as an

asymptotic expansion in powers of x at x = 0.

All these notations hold in the multivariate case as well, except that if the

limit value z0 is infinity then a statement such as f (z) = O(g(z)) must also

specify how z approaches the limit. A direction is a ray in Rd defined by all
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1.1 Generating functions and asymptotics 7

positive multiples of a fixed non-zero vector, which can also be viewed as

an element of (d − 1)-dimensional real projective space RPd−1. Often we will

parametrize directions of interest by taking r → ∞ while fixing or bounding

the normalized vector r̂ := r/|r|, where, as introduced above,

|r| = |r1| + |r2| + · · · + |rd |.

Sometimes we shall loosely refer to “the direction r”, by which we mean the

direction parametrized by r̂, or the ray determined by r.

Definition 1.6. A multivariate asymptotic expansion

fr ≈
∞
∑

j=0

c jg j(r)

holds on a compact set of directions D ⊆ RPd−1 if each c j ∈ C, each g j =

o(g j+1), and fr −
∑M−1

j=0 g j(r) = O(gM) for each M as r → ∞ with r̂ ∈ D. This

asymptotic expansion is a uniform asymptotic expansion on D if the implied

constants can be chosen independently of the sequence r as long as r̂ ∈ D.

Example 1.7. In Chapter 9 we shall derive the result

(

r + s

s

)

∼ (r + s)(r+s)

rr ss

√

r + s

2πrs

for all r, s > 0 as (r, s) → ∞ with r/(r + s) and s/(r + s) remaining bounded

and away from 0. This gives the first term of an asymptotic series which is

uniform provided r/s and s/r are bounded away from 0, with all terms in the

series varying smoothly with direction. Because of our restrictions on r/s, this

asymptotic series can be expressed in terms of the asymptotic scale

g j(r, s) =
(r + s)(r+s)

rr ss

√

r + s

rs
(r + s)− j ,

an asymptotic scale involving decreasing powers s− j of s, or an asymptotic

scale involving decreasing powers r− j of r. Note that this multivariate asymp-

totic approximation is not uniform for all real directions: for instance, if r = 0

then
(

r+s

s

)

= 1 for all s. /

Remark. Throughout this book, we typically use f (z) and an instead of F(z)

and ar when dealing with the univariate case.

As we will see in Chapter 3, the generating function f (z) for a univariate

sequence {an : n ∈ N} leads, almost automatically, to asymptotic estimates for
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8 Introduction

an as n → ∞. To estimate an when its generating function f is known, we

begin with Cauchy’s integral formula

an =
1

2πi

∫

C
z−n−1 f (z) dz . (1.3)

Equation (1.3) represents an by a complex contour integral on a sufficiently

small circle C around the origin, and one may apply complex analytic methods

to obtain an asymptotic estimate. The necessary knowledge of residues and

contour shifting may be found in an introductory complex variables text such

as [Con78b; BG91], with a particularly nice treatment of univariate saddle

point integration found in [Hen88; Hen91]. In particular, the singularities of

f (z) play a large role in characterizing asymptotic behavior.

The situation for multivariate arrays is nothing like the situation for uni-

variate arrays. In 1974, when Bender published his review article [Ben74] on

asymptotic enumeration, the literature on asymptotics of multivariate generat-

ing functions was in its infancy. Bender’s concluding section urges research in

this area:

Practically nothing is known about asymptotics for recursions in two variables even

when a generating function is available. Techniques for obtaining asymptotics from

bivariate generating functions would be quite useful.

In the 1980s and 1990s, a small body of results was developed by Bender,

Richmond, Gao, and others, giving the first partial answers to asymptotic ques-

tions for multivariate generating functions. The first paper to concentrate on

extracting asymptotics from multivariate generating functions was [Ben73], al-

ready published at the time of Bender’s survey, but the seminal paper is [BR83].

The authors work under the hypothesis that F has a singularity of the form

A/(zd − g(x))q on the graph of a smooth function g, for some real exponent

q, where x denotes (z1, . . . , zd−1). They show, under appropriate further hy-

potheses on F, that the probability measure µn one obtains by renormalizing

{ar : rd = n} to sum to 1 converges to a multivariate normal distribution when

appropriately rescaled. Their method, which we call the GF-sequence method,

is to break the d-dimensional array {ar} into a sequence of (d−1)-dimensional

slices and consider the sequence of (d − 1)-variate generating functions

fn(x) =
∑

r:rd=n

arx
r .

They show that, asymptotically as n→ ∞,

fn(x) ∼ Cng(x)h(x)n (1.4)
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1.2 New multivariate methods 9

and that sequences of generating functions obeying (1.4) satisfy a central limit

theorem and a local central limit theorem.

The GF-sequence method is limited to the single, though important, case

where the coefficients ar are nonnegative and possess Gaussian (central limit)

behavior. The work of [BR83] has been greatly expanded upon, but always

in a similar framework. For example, it has been extended to matrix recur-

sions [BRW83] and, in [GR92; BR99], from algebraic to algebraico-logarithmic

singularities of the form F ∼ (zd −g(x))q logα(1/(zd −g(x))). The difficult step

under these hypotheses is deducing asymptotics from the quasi-power hypoth-

esis (1.4).

1.2 New multivariate methods

The research presented in this book grew out of several problems encoun-

tered by the first author, concerning bivariate and trivariate arrays of probabil-

ities. One might have thought, based on the situation for univariate generating

functions, that there would be well-known, neatly packaged results yielding

asymptotic estimates for the probabilities in question. At that time, the most

recent and complete reference on asymptotic enumeration was a 1995 survey

of Odlyzko [Odl95]. As mentioned in the preface, only six of the over 100

pages of the survey are devoted to multivariate asymptotics, mainly to the GF-

sequence results of Bender et al., and its section on multivariate methods closes

with a call for further work in this area. Evidently, a general asymptotic method

was not known in the multivariate case, even for the simplest non-trivial class

of rational functions.

This stands in stark contrast to the univariate theory of rational functions,

which is trivial in combinatorial applications (see Chapter 3). The relative dif-

ficulty of the problem in higher dimensions is perhaps unexpected, but connec-

tions to other areas of mathematics such as Morse theory are quite intriguing.

These connections, as much as anything else, have caused us to pursue this

line of research long after the urgency of the original motivating problems had

faded.

Odlyzko [Odl95] describes why he believes multivariate coefficient estima-

tion to be difficult. First, generating function singularities are no longer iso-

lated, but generally form (d−1)-dimensional hypersurfaces, so even multivari-

ate rational functions have an infinite set of singularities. Second, the multivari-

ate analogue of the one-dimensional residue theorem is the considerably more

difficult theory of Leray residues [Ler59]. This theory is fleshed out in the text

of Aizenberg and Yuzhakov [AY83], who also spend a few pages [AY83, Sec-
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10 Introduction

tion 23] on generating functions and combinatorial sums. Further progress in

using multivariate residues to evaluate coefficients of generating functions was

made by Bertozzi and McKenna [BM93], though at the time of Odlyzko’s sur-

vey none of the papers based on multivariate residues such as [Lic91; BM93]

had resulted in any kind of systematic application of these methods to enumer-

ation. It is interesting to note that several of these early works, such as [BM93;

KY96], are centered on queueing theory applications.

The focus of this book is a more recent vein of research, begun in [PW02],

continued in its infancy in [PW04; Lla03; Wil05; Lla06; RW08; RW11; PW08;

DeV10; PW10], and now comprising a stable and ever-growing component

of enumerative combinatorics. This research extends ideas that are present to

some degree in [Lic91; BM93; KY96], using complex methods that are gen-

uinely multivariate to evaluate coefficients via the multivariate Cauchy formula

ar =

(

1

2πi

)d ∫

T

z
−r−1F(z) dz , (1.5)

where T is a suitable product of circles in each variable. We hope that by

avoiding the symmetry-breaking decompositions of the GF-sequence method

we will obtain methods that are more universally applicable. In particular,

much of this past work can be viewed as instances of a more general result

estimating the Cauchy integral via topological reductions of the cycle T of

integration. These topological reductions, while not fully automatic, are algo-

rithmically decidable in many cases. The ultimate goal, now well on its way

to fruition [Mel21, Chapter 7], is to develop software to automate all of the

computation.

We can by no means say that the majority of multivariate generating func-

tions fall prey to these new techniques. Nevertheless, as illustrated in this

text and a steadily increasing number of papers, we can treat a large num-

ber of combinatorially interesting examples. The class of functions to which

the methods described in this book may be applied is larger than the class of

rational functions, but similar in spirit: the function must have singularities,

and the singularities dictating asymptotics must be poles. This translates to the

requirement that the function be meromorphic in a neighborhood of a certain

polydisk, which means that it has a representation, at least locally, as a quotient

of analytic functions.

Throughout this book, we reserve the symbols F, P, and Q for a meromor-

phic function F expressed as the quotient P/Q of analytic functions with a
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1.2 New multivariate methods 11

convergent series expansion

F(z) =
P(z)

Q(z)
=

∑

r

arz
r .

Although this introduction has focused on power series expansions, we will

develop the theory for convergent Laurent expansions, allowing the index r to

range over Zd. The set V of singularities of F, which is crucial to the asymp-

totic analysis, is known as its singular variety. For instance, if P and Q are

coprime polynomials then the singular variety is the algebraic set V = {z ∈
C

d : Q(z) = 0}.
We now briefly describe the ACSV approach to computing multivariate

asymptotics. A more detailed overview is provided in Chapter 7.

(i) Use the multidimensional Cauchy integral (1.5) to express ar as an inte-

gral over a d-dimensional torus (product of circles) T in Cd.

(ii) Observe that T may be replaced by any cycle homologous to [T ] in

Hd(M), whereM is the domain of analyticity of the integrand.

(iii) Deform the cycle T to lower the modulus of the integrand as much as

possible. Morse-theoretic arguments imply that local maxima are char-

acterized by the set critical(r) of critical points of V, which depend

only on the direction r̂ of r as r → ∞ and are saddle points for the

magnitude of the integrand.

(iv) Use algebraic methods to encode the elements of critical(r) by a finite

collection of equalities and inequalities (defined by polynomials when F

is rational).

(v) Use topological methods to find certain minimax cycles C(w) near each

critical point w, termed quasi-local cycles, such that the homology class

[T ] can be represented by a sum
∑

w
nwC(w) with each nw ∈ Z.

(vi) Refine the set of critical points to the set contrib(r) of contributing

points that maximize the modulus of the Cauchy integrand among the

critical points w with nw , 0. In the vast majority of cases for which we

have explicit asymptotic results, it is the case that nw ∈ {0,±1}.
(vii) Asymptotically approximate integrals over the C(w) as w ranges over

the set of contributing points, using a combination of residue and saddle

point techniques.

When successful, this approach leads to an asymptotic representation of the

coefficients ar that is uniform as r varies on the interior of finitely many cones

that partitionRd. As r̂ varies over compact subsets in the interior of such cones,
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