Cambridge University Press & Assessment 978-1-108-83581-7 — Stellar Structure and Evolution Marc Pinsonneault , Barbara Ryden Frontmatter More Information

Stellar Structure and Evolution

Stellar Structure and Evolution, the second volume in the Ohio State Astrophysics Series, takes advantage of our new era of stellar astrophysics, in which modern techniques allow us to map the interiors of stars in unprecedented detail. This textbook for upper-level undergraduate and graduate students aims to develop a broad physical understanding of the fundamental principles that dictate stellar properties. The study of stellar evolution focuses on the "life cycle" of stars: how they are born, how they live, and how they die. As elements ejected by one generation of stars are incorporated into the next generation, stellar evolution is intertwined with the chemical evolution of our galaxy. Focusing on key physical processes without going into encyclopedic depth, the authors present stellar evolution in a contemporary context, including phenomena such as pulsations, mass loss, binary interactions, and rotation, which contribute to our understanding of stars.

MARC PINSONNEAULT received his Ph.D. in astronomy from Yale University in 1988. He is a full professor of astronomy at The Ohio State University, where he has been teaching since 1994. He has an extensive research record in theoretical models of stellar structure and evolution, with an emphasis on stellar rotation and magnetism, rotationally induced mixing, helio- and asteroseismology, solar models, and solar neutrinos. He was elected a Fellow of the AAAS in 2010 and was recognized as a Distinguished University Scholar at Ohio State in 2017.

BARBARA RYDEN received her Ph.D. in astrophysical sciences from Princeton University. After postdocs at the Harvard-Smithsonian Center for Astrophysics and the Canadian Institute for Theoretical Astrophysics, she joined the astronomy faculty at The Ohio State University, where she is a full professor. She has 30 years of experience in teaching, at levels ranging from introductory undergraduate courses to advanced graduate seminars. She won the Chambliss Astronomical Writing Award for her textbook *Introduction to Cosmology*, and she is co-author, with Richard Pogge, of *Interstellar and Intergalactic Medium*.

Cambridge University Press & Assessment 978-1-108-83581-7 — Stellar Structure and Evolution Marc Pinsonneault , Barbara Ryden Frontmatter <u>More Information</u>

> "Pinsonneault and Ryden's book is a very welcome addition to the field of stellar evolution at a level appropriate to advanced undergraduate- or graduate-level study, since it manages to provide a clear, comprehensive overview of topics, without being intimidating in size or style. The textbook includes up-to-date results from contemporary missions such as Gaia and Kepler, with the final chapters discussing stellar rotation, pulsations, and binary evolution in depth. Most chapters include a few well-designed exercises, with a research-level reading list provided after the appendix. I would highly recommend it for Master's-level courses on stellar structure and evolution."

Professor Paul Crowther, University of Sheffield

"This text is a welcome addition to the pantheon of monographs and textbooks explaining the physical basics of stellar structure and evolution. Aimed primarily at an audience learning the material for the first time, this text explains the phases of the life of a star through a clear application of physical principles. Weaving together classical fluids, quantum mechanics, thermodynamics, and nuclear physics, it enables students and their instructors to gain the physical intuition needed for the study of stars in this time of their observational renaissance."

Professor Lars Bildsten, University of California, Santa Barbara

"This is a welcome addition to the literature, providing a comprehensive overview of stellar structure and evolution, and including insights from the latest data, techniques, and results."

Professor William Chaplin, University of Birmingham

Cambridge University Press & Assessment 978-1-108-83581-7 — Stellar Structure and Evolution Marc Pinsonneault , Barbara Ryden Frontmatter More Information

Stellar Structure and Evolution

Marc Pinsonneault

The Ohio State University

Barbara Ryden

The Ohio State University

Cambridge University Press & Assessment 978-1-108-83581-7 — Stellar Structure and Evolution Marc Pinsonneault, Barbara Ryden Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781108835817 DOI: 10.1017/9781108869249

© Marc Pinsonneault and Barbara Ryden 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

Printed in the United Kingdom by TJ Books Limited, Padstow, Cornwall, 2023

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-108-83581-7 Hardback ISBN 978-1-108-79882-2 Paperback

Additional resources for this publication at www.cambridge.org/osas_sse

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-108-83581-7 — Stellar Structure and Evolution Marc Pinsonneault , Barbara Ryden Frontmatter <u>More Information</u>

For Julie, my Sun and Moon. MP

For Pat Westphal, who started me down the inclined plane of physics. BR

Cambridge University Press & Assessment 978-1-108-83581-7 — Stellar Structure and Evolution Marc Pinsonneault, Barbara Ryden Frontmatter <u>More Information</u>

Contents

	Prefac	<i>page</i> xi	
I	Prop	1	
	1.1	Observing the Sun	2
	1.2	Observing Other Stars	8
	1.3	Correlations among Properties	19
	1.4	Observing Clusters of Stars	25
	Exer	rcises	28
2	Equa	ations of Stellar Structure	30
	2.1	Stars Conserve Mass	30
	2.2	Stars Are in Hydrostatic Equilibrium	32
	2.3	Stars Are in Thermal Equilibrium	34
	2.4	Stars Transport Energy	36
	Exer	rcises	41
3	Equa	ations of State	43
	3.1	Central Pressure of Stars	44
	3.2	Quantum Statistics	46
	3.3	Ideal Gas Pressure	50
	3.4	Degeneracy Pressure	53
	3.5	Radiation Pressure	59
	Exer	rcises	62
4	Stell	ar Energy Transport	64
	4.1	Opacity	64

viii		Contents	ontents		
	4.2	Convection	75		
	4.3	Mixing Length Theory	82		
	4.4	Convective Overshoot	86		
	Exer	rcises	87		
5	Star	s as Fusion Reactors	89		
	5.1	Quantum Tunneling and Fusion	90		
	5.2	Energy Generation and Composition Change	95		
	5.3	The pp Chain	100		
	5.4	The CNO Bi-cycle	108		
	5.5	Triple Alpha and Beyond	112		
	Exer	reises	116		
6	Mair	n Sequence Stars	117		
	6.1	Internal Structure	119		
	6.2	Polytropes	121		
	6.3	Homology	126		
	6.4	Solar Models	132		
	6.5	Zero Age Main Sequence Models	138		
	Exer	rcises	144		
7	Star	Formation: Before the Main Sequence	146		
	7.1	Molecular Clouds and Instability	147		
	7.2	Isothermal Collapse and Fragmentation	153		
	7.3	Protostars	156		
	7.4	Pre-Main Sequence Stars	158		
	7.5	Birthline and Deuterium Burning	164		
	7.6	Initial Mass Function	168		
	Exer	rcises	171		
8	Evol	ved Stars: After the Main Sequence	173		
	8.1	Building a Helium Core	175		
	8.2	Schönberg–Chandrasekhar Limit	179		
	8.3	Shell Hydrogen Burning and Red Giants	184		
	8.4	Helium Ignition and Core Helium Burning	189		
	8.5	Asymptotic Giant Branch	196		
	8.6	Making s-Process Elements	199		

		Contents	ki
	8.7 \$	Superwinds and Planetary Nebulae	203
	Exercises		206
9	Ex-Stai	209	
	9.1	White Dwarfs	211
	9.2 1	Neutron Stars and Black Holes	219
	9.3 (Core Collapse Supernovae	223
	9.4 I	Making r-Process Elements	228
	Exercis	230	
10	Rotatir	ng Stars	231
	10.1 I	Effects of Rotation on Structure	231
	10.2 I	Meridional Circulation	234
	10.3	Angular Momentum Transport	238
	10.4 I	Rotation and Star Formation	243
	10.5 I	Rotation on the Main Sequence	246
	10.6	Stellar Winds and Angular Momentum	250
	Exercis	ses	254
П	Pulsating Stars		255
	11.1	Adiabatic Radial Pulsations	257
	11.2	Non-adiabatic Radial Pulsations	262
	11.3	Adiabatic Non-radial Pulsations	268
	11.4 (Observational Asteroseismology	275
	Exercis	279	
12	Binary	281	
	12.1	Observed Properties of Binaries	282
	12.2	Close Binaries	287
	12.3	Cataclysmic Variables	295
	12.4 I	Banging Stars Together	300
	Exercis	304	
App	oendix A	Constants and Units	306
App	oendix B	Properties of Example Stars	308
	Further	Reading, Bibliography, and Figure Credits	309
	Index		320

Cambridge University Press & Assessment 978-1-108-83581-7 — Stellar Structure and Evolution Marc Pinsonneault, Barbara Ryden Frontmatter More Information

Preface

This textbook is part of a series based on the curriculum for astronomy graduate students at The Ohio State University (OSU). In this curriculum, first-year graduate students take a five credit-hour course "Observed Properties of Astronomical Systems." This is followed by six courses, each of two or three credithours: "Atomic and Radiative Processes in Astrophysics," "Stellar Structure and Evolution," "Dynamics," "Cosmology," "Numerical and Statistical Methods in Astrophysics," and "The Interstellar Medium and the Intergalactic Medium." The philosophy of the OSU graduate program, however, is best encapsulated in the two credit-hour course "Order of Magnitude Astrophysics," which is offered every year to first- and second-year students. In this course, students work together to solve a wide range of astrophysical problems, using basic physical principles to find back-of-envelope solutions.

The Ohio State Astrophysics Series (OSAS), of which this is the second volume, is a projected series of books based on lecture notes for the six core courses and the first-year "Observed Properties" course. These textbooks will not be exhaustive monographs, but will instead adopt the back-of-envelope philosophy of the "Order of Magnitude" course to emphasize the most important physical principles in each subfield of astrophysics. The goal is to make our series a point of entry into the deeper and more detailed classic textbooks in our field. Although each volume in OSAS will stand on its own, care will be taken to unify notation and vocabulary as much as possible across volumes.

Stellar Structure and Evolution is based on the semester-long class of the same name. Stellar structure focuses on the underlying physics of stars. It naturally includes subjects that undergraduate astronomy and physics majors usually see in isolation: statistical mechanics, thermodynamics, electricity and magnetism, quantum mechanics, waves, fluid dynamics, and nuclear physics, among others. As such, the potential list of topics is vast, and we cannot address all of them. Our primary goal is to develop physical intuition for the fundamental principles Cambridge University Press & Assessment 978-1-108-83581-7 — Stellar Structure and Evolution Marc Pinsonneault, Barbara Ryden Frontmatter More Information

xii

Preface

that dictate the main properties of stars. A secondary goal is for students to see how disparate tools can be harnessed to understand a rich physical system like a star. Stellar evolution is the study of the "life cycle" of stars: how they are born, how they live, and how they die. Stellar evolution is intertwined with chemical evolution, the origin of the elements on the periodic table. Classical texts in the field have focused mainly on the evolution of spherical isolated stars. This does not reflect the current state of the art in a dynamic field. We therefore present stellar evolution in a modern context, including phenomena such as mass loss, binary interactions, and rotation where relevant.

This textbook uses the cgs (centimeter, gram, second) system of units commonly used in graduate education in astronomy. It also uses the most common astronomical distance units: the solar radius (R_{\odot}), the astronomical unit (au), and the parsec (pc). In addition, masses are given in units of the solar mass (M_{\odot}) and luminosities in units of the solar luminosity (L_{\odot}). On small scales, when we examine individual photons and other particles, the electron-volt (eV) will be a useful small unit of energy, with $1 \text{ eV} = 1.602 \times 10^{-12} \text{ erg}$. Other helpful conversion factors, and the values of physical and astronomical constants, are included in the Appendices. Online resources for this book hosted by Cambridge University Press include ancillary materials such as a solutions manual and links to Jupyter notebooks for recreating and modifying figures in the textbook.

The text of this book was greatly improved by the careful reading and insightful recommendations of Jennifer Johnson (OSU). Many of the figures and images in this book are derived from works in the published astronomical literature. We are grateful to the authors and journals who promptly granted permission to use their figures. We are especially grateful to those of our colleagues who dug out their original data for us to replot for this volume. Particular thanks are due to Emily Griffith (OSU) for Figure 1.9, Zeki Eker (Akdeniz University) for Figures 1.12 and 1.13, Franck Delahaye (Observatoire de Paris) for Figure 4.2, Kohji Takahashi (GSI) for Figure 5.2, Patrick Vallely (OSU) for Figure 9.3, Jamie Tayar (Institute for Astronomy) for Figure 10.4, Gibor Basri (University of California, Berkeley) for Figure 10.7, Radek Poleski (University of Warsaw) for Figure 11.1, and Mathieu Vriard (OSU) for Figure 11.9. All original figures were created by Richard Pogge (OSU), in his role as technical editor of the Ohio State Astrophysics Series.