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Properties of Stars

When quacks with pills political would dope us,

When politics absorbs the livelong day,

I like to think about that star Canopus,

So far, so far away.

Greatest of visioned suns, they say who list ’em;

To weigh it science almost must despair.

Its shell would hold our whole dinged solar system,

Nor even know ’twas there.

Bert Leston Taylor (1866–1921)
“Canopus” [1913]

A star can be defined as a self-gravitating ball of gas, usually spherical or
spheroidal, that is powered by nuclear fusion in its interior. In this text, we will go
slightly beyond the boundaries of this definition to discuss protostars and pre-
main sequence stars (not yet powered by fusion), stellar remnants (no longer
powered by fusion), and brown dwarfs (too small to be powered by fusion).

Less than 10% of the baryonic matter in the universe is contained in stars; less
than 5% of the mass-energy of the universe is in the form of baryonic matter.
Thus, stars make up less than 0.5% of the universe. Why do we devote an entire
astrophysics textbook to such a small fraction of the universe? In part, we are sim-
ply following the well-trodden path of our astronomical ancestors. It wasn’t until
the twentieth century that astronomers were able to make extensive observations
outside the visible range of the spectrum (λ = 4000 Å–7500 Å). Since human
eyes evolved to take advantage of light emitted by a star, it isn’t surprising that
our eyes are quite good at detecting stars. Before the development of detectors
that worked outside the visible range, astronomers had to study stars, and objects
that reflect starlight, because that was what they could see.

However, even when we open our eyes (metaphorically) to the full spectrum of
electromagnetic radiation, stars are well worth studying. The average mass den-
sity of baryonic matter today is ρbary,0 = 4.2 × 10−31 g cm−3. The average density
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2 1 Properties of Stars

of the Sun is ρ⊙ = 1.410 g cm−3, over 30 orders of magnitude greater than the
baryonic density of the universe as a whole. When gas is compressed to such
high densities, interesting physical processes, such as nuclear fusion, can occur.
How does a self-gravitating fusion reactor regulate itself? How does the released
energy escape from the self-gravitating fusion reactor? What happens when the
self-gravitating fusion reactor runs out of fuel? How is the self-gravitating fusion
reactor assembled from the low-density gas of interstellar space? How does
rotation affect the self-gravitating fusion reactor’s structure?

All these questions will be dealt with in this text; however, let’s replace the
phrase “self-gravitating fusion reactor” with the word “star,” for the sake of
brevity.

1.1 Observing the Sun

For those of us living on or near the Earth, the most easily observed star is the
Sun. Many generations of astronomers have attempted to determine the length
of the astronomical unit (au), originally defined as the average distance from
the Earth’s center to the Sun’s center. Geometric methods, such as diurnal par-
allax, gave way to radar and to radio telemetry of interplanetary spacecraft. By
the twenty-first century, the debate over how to correct for relativistic effects and
for the gradually increasing size of the Earth’s orbit (resulting from the Sun’s
mass-energy loss) became frustratingly tangled. Cutting the Gordian knot, the
International Astronomical Union (IAU) resolved that the astronomical unit be
defined as a conventional unit of length, with 1 au ≡ 149 597 870.7 km. For our
purposes, we can state that the length of the semimajor axis of the Earth’s orbit is
a = 1 au, and that the perihelion and aphelion distances are rpe = 0.9833 au and
rap = 1.0167 au.

The angular diameter of the Sun as seen from Earth ranges from θpe =

1951 arcsec at perihelion to θap = 1887 arcsec at aphelion. The radius of the Sun
in physical units is thus

R⊙ = rap tan

(

θap

2

)

= rpe tan

(

θpe

2

)

≈ 0.004 65 au ≈ 696 000 km. (1.1)

This calculation assumes that the Sun has a well-defined radius, despite being a
ball of gas rather than a ball of solid rock. In fact, a broadband optical image
of the Sun, as seen in Figure 1.1, does have rather well-defined edges. This is
because most of the visible light from the Sun comes from the thin photosphere,
a layer that is only ∼400 km thick. Quoting a single radius R⊙ for the Sun also
implicitly assumes that the Sun is spherical. Fortunately, this approximation is
an excellent one. Although the Sun does have a measurable oblateness, its polar
radius is smaller than its equatorial radius by only 5 km, representing a difference
of less than one part in 105. Given that the Sun is continuously quivering (as a
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1.1 Observing the Sun 3

Figure 1.1 An image of the Sun at visible wavelengths, taken on 2022 May 20, when the

Sun had a sunspot group in one hemisphere. [Courtesy of NASA/SDO and HMI science

team]

result of seismic waves), and that it is slowly expanding as it evolves, the IAU has
recommended the use of a “nominal solar radius,” defined as

1 RN
⊙ ≡ 695 700 km. (1.2)

This is the value for the solar radius that we will use in this text.1

The solar image in Figure 1.1 shows a number of dark sunspots in the
Sun’s photosphere. Sunspots are regions where the Sun’s magnetic field is much
stronger than average. A typical magnetic field strength in the Sun’s photo-
sphere is B⊙ ∼ 3 G; in a sunspot, however, the field strength can be as high as
Bspot ∼ 3000 G. Sunspots appear dark because they are cooler than the surround-
ing photosphere. While the average photospheric temperature is T ∼ 5800 K, the
temperature at the center of a sunspot can be as low as T ∼ 3900 K. (The result-
ing lower gas pressure within the sunspot compensates for its higher magnetic
pressure, and the sunspot remains in pressure equilibrium with the surrounding
photosphere.)

The existence of sunspots, which drift only gradually in solar latitude and longi-
tude, permits us to measure the Sun’s rotation period. Galileo, for instance, used
his sunspot observations to estimate that the Sun’s rotation period was roughly

1 The use of a nominal solar radius enables us to make statements such as “When the Sun becomes a red giant,
the Sun’s radius will be 2.4 solar radii” without causing rampant confusion.
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4 1 Properties of Stars

equal to one month (“mese lunare”), or 29 days. Subsequent observations revealed
that the Sun is in differential rotation, with a period that ranges from Prot = 24.5 d
at its equator to Prot = 27.5 d at latitude ℓ = ±45◦. (It’s hard to use sunspots
to determine the rotation period at higher latitudes, since spots stay fairly close
to the equator.) The equatorial rotation period P⊙ = 24.5 d corresponds to an
angular speed of �⊙ = 2π/P⊙ = 2.97 × 10−6 s−1 and a rotation speed of
v⊙ = �⊙R⊙ = 2.07 km s−1.

From the size of the Earth’s orbit, a = 1 au = 1.495 98×1013 cm, and the length
of the sidereal year, P = 365.256 d = 3.155 81 × 107 s, we can use Kepler’s third
law, as modified by Newton, to find

GM⊙ =
4π2a3

P2
= 1.3271 × 1026 cm3 s−2, (1.3)

where M⊙ is the mass of the Sun and G is Newton’s gravitational constant. (The
mass of the Earth, which is three parts per million of the Sun’s mass, can be
ignored at this level of accuracy.) The product GM⊙, known as the solar mass
parameter, is better known than G and M⊙ are individually. In fact, the IAU has
recommended a “nominal solar mass parameter,” defined as

1 (GM⊙)N
≡ 1.327 124 4 × 1026 cm3 s−2. (1.4)

Using the best available value for the gravitational constant,2 G = 6.6743 ×

10−8 cm3 g−1 s−2, we find that the nominal solar mass parameter implies

1 M⊙ = 1.9884 × 1033 g. (1.5)

This is the value for the solar mass that we will use in this text.
The mass of the Sun is currently decreasing because of the solar wind, an

outflow of charged particles from the Sun’s extended hot corona. Satellites sent
beyond the Earth’s magnetosphere have studied the density, speed, and composi-
tion of the solar wind. The particles of the solar wind are mainly electrons and
protons, with a smaller number of 4He nuclei and other heavier ions. The solar
wind is “gusty,” with fluctuations in its density and speed. However, averaged over
time, the Sun’s mass loss rate from the solar wind is Ṁwind ≈ 1.2 × 1012 g s−1 ≈

2.0 × 10−8 M⊙ Myr−1.
At any given instant, the solar irradiance is the energy flux of sunlight, inte-

grated over all frequencies, incident on a plane perpendicular to the Sun’s rays
at a distance of 1 au from the Sun. Since the Earth’s atmosphere is very good
at absorbing some frequencies of light, the solar irradiance can be measured
accurately only by satellites. As shown in Figure 1.2, the solar irradiance var-
ies with time over the solar activity cycle of ∼11 yr. At solar minimum, when the
Sun has few sunspots, flares, or plages (bright regions near sunspots), the solar
irradiance is 1.3606 × 106 erg s−1 cm−2, with little variation from day to day; at

2 This is the 2018 CODATA recommended value for G, with a relative standard uncertainty of 22 parts per
million.
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1.1 Observing the Sun 5

Figure 1.2 Solar irradiance from 2003 Feb to 2020 Feb, when the Solar Radiation and

Climate Experiment (SORCE) satellite was in operation. During this time, solar minima

occurred around 2008 Dec and 2019 Dec, while a solar maximum occurred around 2014

Apr. [Data from SORCE]

solar maximum, it averages 1.3614 × 106 erg s−1 cm−2, with a larger variation. It
may seem counterintuitive that the Sun produces more light when it is covered
with cool sunspots at solar maximum; however, the increased light from flares
and plages at solar maximum more than makes up for the decreased light from
sunspots.

The solar irradiance averaged over a complete solar cycle is called the solar

constant. A value of S⊙ = 1.361 × 106 erg s−1 cm−2 is typically adopted for the
solar constant. This value yields a computed solar luminosity of

1 L⊙ = 4πa2S⊙ = 3.828 × 1033 erg s−1. (1.6)

This is equal to the IAU’s recommended “nominal solar luminosity,” and is the
value for the solar luminosity that we will use in this text. In addition to emitting
photons from its superficial photosphere, the Sun also emits neutrinos from its
core. The Sun’s neutrino luminosity is Lν,⊙ ≈ 0.023 L⊙. The equivalent mass
loss rate of all the photons and neutrinos that the Sun tosses away into space is

Ṁrad =
L⊙ + Lν,⊙

c2
= 4.36 × 1012 g s−1

= 6.92 × 10−8 M⊙ Myr−1. (1.7)

Thus, the loss of radiation provides more than three-quarters of the Sun’s mass-
energy loss, with the solar wind making only a minority contribution. The total
mass loss rate of the Sun is

Ṁ⊙ = Ṁwind + Ṁrad ≈ 8.9 × 10−8 M⊙ Myr−1, (1.8)

leading to a characteristic mass loss time M⊙/Ṁ⊙ ≈ 11 000 Gyr.
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6 1 Properties of Stars

Figure 1.3 The solar spectrum as seen 1 au from the Sun, without filtering by the

Earth’s atmosphere. The dashed line shows a blackbody spectrum with a temperature

T = 5772 K. [ASTM E-490-00 solar spectrum]

An effective temperature Teff,⊙ for the Sun’s photosphere can be computed from
the relation

L⊙ = 4πR2
⊙σSBT4

eff,⊙, (1.9)

where σSB = 5.6704 × 10−5 erg cm−2 s−1 K−4 is the Stefan–Boltzmann constant.
(In other words, the Sun’s effective temperature is the temperature of a perfect
blackbody with the same luminosity and surface area as the Sun.) Using the IAU
nominal values for the solar radius and solar luminosity, the effective temperature
of the Sun is

Teff,⊙ =

(

L⊙

4πR2
⊙σSB

)1/4

= 5772 K. (1.10)

Although for some purposes the Sun may be safely approximated as a blackbody
with T = Teff,⊙ = 5772 K, the detailed spectrum of the Sun, shown in Figure 1.3,
is not extremely close to that of a blackbody. In particular, the Sun’s spectrum is
ultraviolet-deficient compared to a blackbody with T = 5772 K. The blackbody
approximation is better in the near infrared, where there are fewer absorption lines
in the Sun’s spectrum.

The absorption lines in the solar spectrum give us information on the ele-
ments present in the photosphere. For instance, the existence of hydrogen is
revealed by the presence of the hydrogen Balmer lines: Hα at λ = 6563 Å, Hβ

at λ = 4861 Å, and so forth. However, determining the relative abundance of
elements in the Sun is not a straightforward process. Some elements do not have
detectable photospheric absorption lines; for instance, helium was first discovered
from its emission lines in the Sun’s chromosphere, the hotter layer just above the
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1.1 Observing the Sun 7

Figure 1.4 Abundances (by number) of elements present in the Sun at its formation;

abundances are normalized to N(H) = 1012 hydrogen atoms. The 10 most abundant

elements are labeled. [Data from Lodders 2021]

photosphere. In addition, the abundances in the Sun’s photosphere today are not
the same as the abundances the Sun started with. Heavy elements settle slowly
inward through diffusion, while unstable elements such as uranium undergo
decay. Taking into account these effects, Figure 1.4 shows the reconstructed
abundances of the protosolar nebula from which the Sun formed 4.57 Gyr ago.

Figure 1.4 doesn’t display all the information that we have about protosolar
abundances. In particular, it bins together all the different isotopes of each ele-
ment. It is admittedly true that the most common elements are overwhelmingly
made of a single isotope. For instance, in the protosolar nebula, hydrogen was
99.998% ordinary hydrogen (1H) and only 0.002% deuterium (2H) by number,
while helium was 99.983% ordinary helium (4He) and only 0.017% light helium
(3He). However, as we discuss in Section 5.3, the amount of 2H and 3He pres-
ent in a star provides a useful probe of nuclear fusion conditions. Thus, we do
sometimes care about scarce isotopes. (In addition, some elements do not have
an overwhelmingly dominant isotope; for instance, bromine is 50.7% 79Br and
49.3% 81Br by number.)

By contrast, other astrophysical problems are largely indifferent to the exact
details of elemental and isotopic abundances. For these problems, we need only
three broad categories: (1) hydrogen, (2) helium, and (3) all other elements com-
bined. Suppose that the mass density of gas is ρ, the number density of hydrogen
nuclei is nH, and the number density of helium nuclei is nHe. The mass of a hydro-
gen atom is mH = 1.674 × 10−24 g; at solar abundance, the presence of 2H raises
the mean atomic mass by only 1 part in 25 000. The mass of a helium atom is
mHe = 6.646 × 10−24 g; at solar abundance, the presence of 3He lowers the mean
atomic mass by only 1 part in 8000. Knowing the atomic masses, we can convert
from the number density nH to the mass fraction of hydrogen,
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8 1 Properties of Stars

X ≡
nHmH

ρ
, (1.11)

and from the number density nHe to the mass fraction of helium,

Y ≡
nHemHe

ρ
. (1.12)

This means that the mass fraction of “metals,” or all heavier elements combined,3

is

Z ≡ 1 − X − Y . (1.13)

The protosolar abundances are estimated to have been X⊙,0 = 0.706, Y⊙,0 =

0.277, and Z⊙,0 = 0.017. In the Sun’s photosphere today, after diffusive settling
of elements heavier than hydrogen, the abundances are X⊙ = 0.739, Y⊙ = 0.246,
and Z⊙ = 0.015. The most abundant metal in the Sun is oxygen, which con-
tributed about 43% of the protosolar metal mass. Carbon provided 18%, neon
provided 14%, and iron provided 8% of the metallicity by mass. (For compari-
son with the solar values, the primordial abundances that came out of Big Bang
Nucleosynthesis were Xp ≈ 0.753 and Yp ≈ 0.247; the primordial mass fraction
of metals was Zp ≈ 3 × 10−9, mostly in the form of 7Li.)

Because we know the Sun better than we know any other star, our standard unit
of length will be the solar radius, with 1 R⊙ = 6.957 × 1010 cm, our standard unit
of mass will be the solar mass, with 1 M⊙ = 1.9884 × 1033 g, and our standard
unit of power will be the solar luminosity, with 1 L⊙ = 3.828 × 1033 erg s−1.
(Since the Sun’s volume is V⊙ = 4πR3

⊙/3 = 1.410 × 1033 cm3, we have the
useful mnemonic that the Sun’s most important properties are all ∼1033 in cgs
units.)

1.2 Observing Other Stars

Determining the properties of stars other than the Sun is frequently made difficult
by their large distance. The most reliable method of finding the distance to the
nearest stars is trigonometric parallax. As seen from Earth over the course of one
year, the apparent motion of a star on the sky can be fitted as a combination of
linear proper motion (from the star’s motion relative to the Sun) and a parallactic
ellipse (from the Earth’s orbital motion around the Sun). The semimajor axis of
the ellipse, in angular units, is the parallax p of the star. The parallax is related to
the star’s distance in parsecs (pc) by the equation

d

1 pc
=

1 arcsec

p
. (1.14)

3 Astronomers commonly use the term “metals” to mean “elements other than hydrogen or helium.” A metal-
lurgist might well be annoyed by this misuse of the word “metal,” but we will accept it as a colorful metaphor
and move onward.
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1.2 Observing Other Stars 9

Given this relation, 1 pc = 206 265 au, just as 1 radian = 206 265 arcsec. As an
example, the nearby star Proxima Centauri has a parallax pprox = 0.768 07 arcsec.
This parallax implies a distance dprox = 1/pprox = 1.3020 pc; this can also be
expressed as dprox = 268 550 au.4

Proxima Centauri is famously the Sun’s nearest neighbor among the stars.
Measuring accurate parallaxes for significantly more distant stars typically
requires dedicated space-based missions. For instance, the Gaia spacecraft was
launched in 2013 with the goal of measuring the parallax of ∼109 stars, with an
accuracy ranging from σp ∼ 10−5 arcsec ∼ 0.01 mas for the apparently brightest
stars in its sample to σp ∼ 0.3 mas for the faintest.

Measuring the angular diameter of stars, given their large distances, typically
requires interferometric techniques. The star (other than the Sun) that has the
largest angular size as seen from Earth is R Doradus, a red variable star. Its angular
diameter has been measured in the near infrared using aperture masking interfer-
ometry, with the result θRD = 57 ± 5 mas. Its parallax is pRD = 18.31 ± 0.99 mas,
yielding a distance dRD = 54.6 ± 3.0 pc. Together, these values imply a physical
radius RRD = 1.56 ± 0.16 au. Thus, R Doradus is physically much larger than the
Sun, with RRD ≈ 330 R⊙.

R Doradus is far from being the largest star in our galaxy. Consider Betel-
geuse (α Orionis), which is also a red variable star. The diameter of Betelgeuse
varies with time; in the year 2019, measurements in the near infrared gave an
angular diameter of θbet = 42.61 ± 0.05 mas.5 The parallax of Betelgeuse is
poorly known, in part because pbet is small compared to the angular size θbet,
and in part because Betelgeuse is variable in shape as well as size. If we assume
pbet = 5.5 ± 1.0 mas, consistent with recent measurements, this implies a phys-
ical radius of Rbet = 3.9 ± 0.7 au. Thus, the radius of Betelgeuse is Rbet ∼

2.5RRD ∼ 800 R⊙. Resolved images of Betelgeuse have been taken at visible and
ultraviolet wavelengths, as seen in Figure 1.5; however, these images include the
extended outer atmosphere of Betelgeuse (which is perceptibly non-spherical).
The ultraviolet angular diameter of Betelgeuse, as shown in the right panel of
Figure 1.5, is θuv ≈ 120 mas, nearly three times the size of the near-infrared pho-
tosphere of Betelgeuse; this corresponds to a physical radius of Ruv ∼ 11 au for
the UV-emitting outer atmosphere.

Although the Sun is small compared to R Doradus and Betelgeuse, it is by no
means a midget among stars. Consider, for instance, the stars of the α Centauri
system. Within this triple star system, Proxima Centauri (at d = 1.302 pc from
the Sun) is loosely bound to the tight binary α Centauri AB (at d = 1.332 pc).
Using interferometric techniques, the angular diameter of α Centauri A, the
brighter star in the binary, is measured to be θA = 8.512 ± 0.022 mas, while that

4 Observed parallaxes (and other properties) of some example stars are given in Table B.1 of Appendix B.
5 The first interferometric measurement of the angular diameter of Betelgeuse was in 1920, when Michelson

and Pease found θbet = 47 ± 5 mas at visible wavelengths.
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10 1 Properties of Stars

(a) (b)

Figure 1.5 (a) Betelgeuse at λ ∼ 6450 Å (VLT: 2019 Jan). Field of view is

180 × 180 mas. Dashed circle = size of photosphere. North is up, east is left.

[ESO/M. Montargès et al. 2021] (b) Betelgeuse at λ ∼ 2700 Å (HST : 1995 Mar). Field

of view is 180 × 180 mas. Overlay indicates the orientation and rotation of Betelgeuse.

[Uitenbroek et al. 1998]

of α Centauri B is θB = 6.002 ± 0.048 mas and that of Proxima Centauri is
θprox = 1.02 ± 0.08 mas. Given the distances to these stars, the physical radii of
the stars in the binary system are RA = 1.22 R⊙ and RB = 0.86 R⊙, while little
Proxima Centauri has Rprox = 0.14 R⊙. This means that the radius of Proxima
Centauri is only ∼40% bigger than that of the planet Jupiter, and is significantly
smaller than the radius of puffy “hot Jupiter” exoplanets, swollen by absorbing
radiative energy from their nearby parent star.

In addition to having a wide range of sizes, stars have a wide range of rotation
speeds. One way to measure the rotation speed vrot of a star is through the rota-
tional broadening of the star’s absorption lines. One problem with using rotational
broadening to determine vrot is that the line width tells you only vrot sin i, where i

is the inclination of the star’s rotation axis relative to the line of sight. Since the
inclination is not known a priori, the line width generally gives only a lower limit
on the value of vrot for any particular star. Another problem with using rotational
broadening is that the star’s absorption lines also show thermal broadening. For
atomic hydrogen, the root mean square thermal speed is

vth =

(

3kT

mH

)1/2

≈ 12 km s−1

(

T

5772 K

)1/2

. (1.15)

For slowly rotating stars like the Sun, thermal broadening is larger than the
rotational broadening. However, for bright stars with high-resolution spectra,
thermal broadening can be disentangled from rotational broadening since the
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