TIME-DOMAIN SCATTERING

The wave equation, a classical partial differential equation, has been studied and applied since the eighteenth century. Solving it in the presence of an obstacle, the scatterer, can be achieved using a variety of techniques and has a multitude of applications. This book explains clearly the fundamental ideas of time-domain scattering, including in-depth discussions of separation of variables and integral equations. The author covers both theoretical and computational aspects, and describes applications coming from acoustics (sound waves), elastodynamics (waves in solids), electromagnetics (Maxwell's equations) and hydrodynamics (water waves). The detailed bibliography of papers and books from the last 100 years cement the position of this work as an essential reference on the topic for applied mathematicians, physicists and engineers.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications.

Books in the **Encyclopedia of Mathematics and Its Applications** cover their subjects comprehensively. Less important results may be summarised as exercises at the ends of chapters. For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit

www.cambridge.org/mathematics

- 130 T. G. Faticoni Modules over Endomorphism Rings
- 131 H. Morimoto Stochastic Control and Mathematical Modeling
- 132 G. Schmidt Relational Mathematics
- 133 P. Kornerup and D. W. Matula Finite Precision Number Systems and Arithmetic
- 134 Y. Crama and P. L. Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering
- 135 V. Berthé and M. Rigo (eds.) Combinatorics, Automata and Number Theory
- 136 A. Kristály, V. D. Rådulescu and C. Varga Variational Principles in Mathematical Physics, Geometry, and Economics
- 137 J. Berstel and C. Reutenauer Noncommutative Rational Series with Applications
- 138 B. Courcelle and J. Engelfriet Graph Structure and Monadic Second-Order Logic
- 139 M. Fiedler Matrices and Graphs in Geometry
- 140 N. Vakil Real Analysis through Modern Infinitesimals
- 141 R. B. Paris Hadamard Expansions and Hyperasymptotic Evaluation
- 142 Y. Crama and P. L. Hammer Boolean Functions
- 143 A. Arapostathis, V. S. Borkar and M. K. Ghosh Ergodic Control of Diffusion Processes
- 144 N. Caspard, B. Leclerc and B. Monjardet Finite Ordered Sets
- 145 D. Z. Arov and H. Dym Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations
- 146 G. Dassios Ellipsoidal Harmonics
- 147 L. W. Beineke and R. J. Wilson (eds.) with O. R. Oellermann Topics in Structural Graph Theory
- 148 L. Berlyand, A. G. Kolpakov and A. Novikov Introduction to the Network Approximation Method for Materials Modeling
- 149 M. Baake and U. Grimm Aperiodic Order I: A Mathematical Invitation
- 150 J. Borwein et al. Lattice Sums Then and Now
- 151 R. Schneider Convex Bodies: The Brunn-Minkowski Theory (Second Edition)
- 152 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions (Second Edition)
- 153 D. Hofmann, G. J. Seal and W. Tholen (eds.) Monoidal Topology
- 154 M. Cabrera García and Á. Rodríguez Palacios Non-Associative Normed Algebras I: The Vidav–Palmer and Gelfand–Naimark Theorems
- 155 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables (Second Edition)
- 156 L. W. Beineke and R. J. Wilson (eds.) with B. Toft Topics in Chromatic Graph Theory
- 157 T. Mora Solving Polynomial Equation Systems III: Algebraic Solving
- 158 T. Mora Solving Polynomial Equation Systems IV: Buchberger Theory and Beyond
- 159 V. Berthé and M. Rigo (eds.) Combinatorics, Words and Symbolic Dynamics
 160 B. Rubin Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis
- 161 M. Ghergu and S. D. Taliaferro Isolated Singularities in Partial Differential Inequalities
- 162 G. Molica Bisci, V. D. Radulescu and R. Servadei Variational Methods for Nonlocal Fractional Problems
- 163 S. Wagon The Banach–Tarski Paradox (Second Edition)
- 164 K. Broughan Equivalents of the Riemann Hypothesis I: Arithmetic Equivalents
- 165 K. Broughan Equivalents of the Riemann Hypothesis II: Analytic Equivalents
- 166 M. Baake and U. Grimm (eds.) Aperiodic Order II: Crystallography and Almost Periodicity
- 167 M. Cabrera García and Á. Rodríguez Palacios Non-Associative Normed Algebras II: Representation
- Theory and the Zel'manov Approach
- 168 A. Yu. Khrennikov, S. V. Kozyrev and W. A. Zúñiga-Galindo Ultrametric Pseudodifferential Equations and Applications
- 169 S. R. Finch Mathematical Constants II
- 170 J. Krajíček Proof Complexity
- 171 D. Bulacu, S. Caenepeel, F. Panaite and F. Van Oystaeyen Quasi-Hopf Algebras
- 172 P. McMullen Geometric Regular Polytopes
- 173 M. Aguiar and S. Mahajan Bimonoids for Hyperplane Arrangements
- 174 M. Barski and J. Zabczyk Mathematics of the Bond Market: A Lévy Processes Approach
- 175 T. R. Bielecki, J. Jakubowski and M. Niewęgłowski Structured Dependence between Stochastic Processes
- 176 A. A. Borovkov, V. V. Ulyanov and Mikhail Zhitlukhin Asymptotic Analysis of Random Walks: Light-Tailed Distributions
- 177 Y.-K. Chan Foundations of Constructive Probability Theory
- 178 L. W. Beineke, M. C. Golumbic and R. J. Wilson (eds.) Topics in Algorithmic Graph Theory
- 179 H.-L. Gau and P. Y. Wu Numerical Ranges of Hilbert Space Operators

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Time-Domain Scattering

P. A. MARTIN Colorado School of Mines

Cambridge University Press 978-1-108-83559-6 — Time-Domain Scattering P. A. Martin Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108835596 DOI: 10.1017/9781108891066

© P. A. Martin 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-83559-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-108-83559-6 — Time-Domain Scattering P. A. Martin Frontmatter <u>More Information</u>

To Thomas, Emma, Samantha and, last but not least, Ann

Cambridge University Press 978-1-108-83559-6 — Time-Domain Scattering P. A. Martin Frontmatter <u>More Information</u>

Contents

	Prefe	ice	paş	ge xiii
1	Acou	istics an	d the Wave Equation	1
	1.1	Governing Equations		1
		1.1.1	Linearisation: Ambient Flows	2
		1.1.2	Linearisation: Acoustics	3
		1.1.3	Zero Ambient Velocity: Bergmann's Equation	4
		1.1.4	Zero Ambient Velocity and Constant Ambient Density	4
		1.1.5	Zero Ambient Velocity and Homogeneous Fluid	5
		1.1.6	Non-Zero Ambient Velocity and Homogeneous Fluid	5
		1.1.7	Non-Uniform Ambient Flows and Dynamic Materials	6
		1.1.8	Nonlinear Acoustics	10
	1.2	Acous	tic Scattering	10
	1.3	Waves	on a String	11
		1.3.1	An Initial-Value Problem	13
		1.3.2	A Bead on an Infinite String: Solution for All t	13
		1.3.3	A Bead on an Infinite String: Initial-Value Problem	15
		1.3.4	A Simple Initial-Boundary Value Problem	16
		1.3.5	A Bead on an Infinite String: Use of Laplace	
			Transforms	17
		1.3.6	Discussion and Summary	18
		1.3.7	Damping, Dissipation, Absorption and Losses	18
		1.3.8	The Forced Wave Equation	20
	1.4	Laplac	ee Transforms: Formal Properties	21
	1.5	Causality		22
	1.6	Electro	omagnetics, Elastodynamics and Hydrodynamics	24
		1.6.1	Electromagnetics	24
		1.6.2	Elastodynamics	25
		1.6.3	Hydrodynamics	26
	1.7	Overview of the Book		27

© in this web service Cambridge University Press

viii		Contents	
2	Wave	efunctions	29
	2.1	Simple Solutions	29
		2.1.1 Plane Waves	29
		2.1.2 Spherical Polar Coordinates	30
		2.1.3 Spherically Symmetric Wavefunctions	30
	2.2	The Time-Domain Far-Field Pattern	32
	2.3	Use of Spherical Harmonics	33
		2.3.1 Separated Solutions	34
		2.3.2 Similarity Solutions	35
		2.3.3 Smirnov's Representation	37
		2.3.4 A Bateman-Like Wavefunction	38
		2.3.5 Multipole Representation	39
		2.3.6 Lamb, Grote and Keller	40
		2.3.7 Changing the Independent Variables	41
	2.4		44
		2.4.1 Integral Representations	45
		2.4.2 Transformations Similar to Kelvin Inversion	47
		2.4.3 Some Two-Dimensional Wavefunctions	49
		2.4.4 Further Transformations	50
	2.5 Spheroidal Wavefunctions		52
		2.5.1 Spheroidal Wave Equation	53
		2.5.2 Angular Spheroidal Wavefunctions	54
		2.5.3 Radial Spheroidal Wavefunctions	54
		2.5.4 Summary	55
	2.6	Moving Sources	55
3	Characteristics and Discontinuities		
	3.1	Characteristics	
	3.2	· · · · · · · · · · · · · · · · · · ·	61
	3.3		62
	3.4		64
		3.4.1 Green's Formula	64
		3.4.2 Weak Solutions of the Wave Equation	65
		3.4.3 Discontinuous Weak Solutions	66
	3.5	Jump Relations in Continuum Mechanics	68
4	Initial-Boundary Value Problems		
	4.1	Formulation of IBVPs	71
	4.2	Acoustic Energy	73
		4.2.1 Energy Conservation	73
		4.2.2 Energy Inequality	74
		4.2.3 Energy Decay	76
	4.3	Incident Sound Pulses	77
	4.4	Compatibility Conditions	78

			Contents	ix
	4.5	Batema	79	
	4.6	Further	r Problems and Boundary Conditions	80
		4.6.1	Locally Reacting Surfaces	80
		4.6.2	Transmission Problems	81
		4.6.3	Membrane Problems	82
		4.6.4	Elastic Shells	82
		4.6.5	Hydrodynamic Problems	84
	4.7	The Fo	84	
		4.7.1	Forward Problem	85
		4.7.2	The Limiting Amplitude Principle	86
		4.7.3	Aerodynamic Sound	87
		4.7.4	Inverse Source Problems	87
	4.8	Exister	nce and Uniqueness Results	88
		4.8.1	Function Spaces and Notation	89
		4.8.2	Problem DI ₀	91
		4.8.3	Problem NI ₀	92
		4.8.4	Summary	93
5	Use of Laplace Transforms			94
	5.1	Formal Treatment		94
	5.2	Laplace Transform of Discontinuous Functions		95
	5.3	Laplac	96	
	5.4	Laplac	96	
	5.5	Synthe	97	
	5.6	Fourier	97	
		5.6.1	Basic Definitions and Strategy	98
		5.6.2	A Time-Domain Radiation Condition	99
		5.6.3	Further Remarks	99
	5.7	Laguer	100	
6	Problems with Spherical Symmetry			102
	6.1	Use of	Simple Sources	102
		6.1.1	Dirichlet Boundary Condition	104
		6.1.2	Pressure Boundary Condition	104
		6.1.3	Neumann Boundary Condition	105
		6.1.4	Discussion and Special Cases	107
	6.2	Use of	Laplace Transforms	108
		6.2.1	Dirichlet Boundary Condition	109
		6.2.2	Pressure Boundary Condition	110
		6.2.3	Neumann Boundary Condition	110
7	Scattering by a Sphere			112
	7.1	Prelim	inaries	112
	7.2	Use of	Laplace Transforms	113
		7.2.1	Dirichlet Boundary Condition	113

х	Contents			
		7.2.2 Pressure Boundary Condition	118	
		7.2.3 Neumann Boundary Condition	118	
		7.2.4 Literature	119	
	7.3	7.3 Residual Potential Methods, Nonreflecting Boundary Kernels		
		and Dirichlet-to-Neumann Mappings		
	7.4	Application of the Similarity Representation		
		7.4.1 Dirichlet Boundary Condition	122	
		7.4.2 Pressure Boundary Condition	124	
		7.4.3 Neumann Boundary Condition	124	
	7.5 Moving Spheres		125 128	
	7.6 Scattering by a Spheroid			
8	Scatt	tering Frequencies and the Singularity Expansion Method	131	
	8.1	Fourier Transforms	131	
	8.2	Scattering Frequencies	132	
	8.3	Boundary Integral Equations	133	
	8.4	Generalised Eigenfunctions; Quasinormal Modes	135	
	8.5	Moving the Inversion Contour	136	
	8.6	The Singularity Expansion Method (SEM)	137	
	8.7	The Eigenmode Expansion Method (EEM)	139	
		8.7.1 Self-Adjoint Operators and Normal Operators	139	
		8.7.2 The Time-Harmonic Single-Layer Operator	140	
		8.7.3 Singular Value Decomposition (SVD)	140	
		8.7.4 The Eigenmode Expansion Method (EEM)	141	
9 Integral Representations		gral Representations	143	
	9.1	Kirchhoff's Formula: Classical Derivations	143	
		9.1.1 Kirchhoff's Formula for Bounded Domains	144	
		9.1.2 Kirchhoff's Formula for Exterior Domains	146	
		9.1.3 Special Cases of Kirchhoff's Formula	147	
		9.1.4 A Formula for the Pressure	148	
		9.1.5 Use of Laplace Transforms	148	
		9.1.6 Weakening the Smoothness Assumptions	149	
	• •	9.1.7 Literature	149	
	9.2	Kirchhoff's Formula: a Space-Time Derivation	150	
	9.3	Kirchhoff's Formula: Use of Generalised Functions	151	
		9.3.1 Fixed Surface S	153	
	0.4	9.3.2 Moving Surface $S(t)$	154	
	9.4	Layer Potentials	156	
		9.4.1 Single-Layer Potential	156	
		9.4.2 Double-Layer Potential9.4.3 Notation and Definitions	158	
			159 150	
		9.4.4 Kirchhoff's Formula	159	

		Contents	xi
10	Integral Equations		161
	10.1 Integral Equations: Indirect Method		161
	10.2	Integral Equations: Direct Method	162
	10.3 Integral Equations: Numerical Methods		
		10.3.1 Basic Time-Stepping Method	164
		10.3.2 Instabilities and Remedies	166
	10.4	Convolution Quadrature Methods	
		10.4.1 A Volterra Integral Equation	168
		10.4.2 Application to Time-Domain Boundary Integral	
		Equations	170
		10.4.3 Application to Scattering by a Sphere	171
		10.4.4 An Alternative View of CQMs	172
	10.5	5 Electromagnetics	
	10.6	Elastodynamics	
	10.7 Hydrodynamics		179
		10.7.1 Clément's Equation	180
	10.8	Method of Fundamental Solutions (MFS, ESM)	181
	10.9	Use of Fourier Transforms	183
	10.10	Cracks, Screens and Other Thin Scatterers	187
		10.10.1 Derivation of Integral Equations Using Fourier	
		Transforms	188
		10.10.2 Derivation of Integral Equations Using Layer Potentials	191
		10.10.3 Comments and Literature	191
	References		
	Citation index		
	Index		247

Preface

I have been studying scattering problems since I was a graduate student in the late 1970s. Specifically, I have studied time-harmonic problems where the solutions depend on time *t* through a factor $\exp(-i\omega t)$ in which ω is the frequency; they are *frequency-domain problems*. More recently, I decided to study *time-domain problems*; the prototype problem is: solve the wave equation in the unbounded region exterior to a bounded obstacle (the scatterer) subject to appropriate boundary and initial conditions. One result is this book.

My frequency-domain work resulted in a book, *Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles*, published in 2006. The present book is written in the same spirit. The problems considered come mainly from acoustics (governed by the three-dimensional scalar wave equation) with some discussion of problems from electromagnetics, elastodynamics and hydrodynamics. The emphasis is on exact methods, primarily separation of variables and boundary integral equations. As far as I know, there is no comparable book. For more information on the topics covered, see the Table of Contents and Section 1.7.

I am grateful to Gerhard Kristensson for his detailed comments on an early draft of the whole book. Thomas Anderson made many useful comments on a later draft. I also thank many others for comments and help with various parts of the book.