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Acoustics and the Wave Equation

Acoustics is the study of small-amplitude disturbances in a compressible fluid: it is a

branch of continuum mechanics. General texts include [711, 644, 696, 207, 227].1 To

simplify our analysis, we suppose that the fluid is inviscid. We derive the governing

equations in Section 1.1. Our derivations cover many interesting situations, includ-

ing inhomogeneous fluids (with properties that can vary spatially and temporally)

and non-uniform background flows. However, (at the present time) few of these sit-

uations have been combined with scattering phenomena, such as when a sound wave

interacts with an object immersed in the flow. Indeed, for most of the book, we shall

restrict ourselves to homogeneous fluids. Then, for most (but not all) purposes, it

is found that the governing equation is the scalar wave equation; the relevant equa-

tions are collected in Section 1.2. Section 1.3 is dedicated to waves on strings, where

the motion is governed by the one-dimensional wave equation. For a general survey

of the mathematics underlying the wave equation, see the paper by Leis [540]. For

another survey, with more emphasis on inverse problems, try [79].

Formal properties of Laplace transforms are collected in Section 1.4, with more

detailed discussions reserved for later. The vexed question of causality is discussed

in Section 1.5. Finally, the governing equations for electromagnetic, elastodynamic

and hydrodynamic problems are collected in Section 1.6.

1.1 Governing Equations

The exact equations for the motion of a compressible inviscid fluid are as follows [57,

§3.6], [697, §I], [675, §2.1.1]. Conservation of mass gives the continuity equation,

Dρex

Dt
+ρex divvvvex = 0, (1.1)

1 Citations such as this will be listed in chronological order.
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2 Acoustics and the Wave Equation

where ρex is the mass density, vvvex is the fluid velocity and t is time. (The subscript

‘ex’ denotes ‘exact’.) The material derivative is defined by

D f

Dt
=

∂ f

∂ t
+ vvvex ·grad f .

In the absence of body forces, conservation of linear momentum gives

ρex
Dvvvex

Dt
+grad pex = 0, (1.2)

where pex is the pressure. For isentropic flows [57, p. 156], [696, eqn (1-4.3)], the

entropy per unit mass, Eex, satisfies

DEex

Dt
= 0. (1.3)

There is also an equation of state which we take as the statement that pex is a function

of ρex and Eex [696, §1-4],

pex = pex(ρex,Eex). (1.4)

Differentiating, we obtain

grad pex = c2
ex gradρex +hex gradEex (1.5)

and

Dpex

Dt
= c2

ex

Dρex

Dt
+hex

DEex

Dt
=−ρexc2

ex divvvvex, (1.6)

using (1.1) and (1.3), where

c2
ex(ρex,Eex) =

∂ pex

∂ρex
and hex(ρex,Eex) =

∂ pex

∂Eex
. (1.7)

Finally, the temperature Tex satisfies [57, eqn (3.6.6)]

1

Tex

DTex

Dt
=

κ

ρex

Dpex

Dt
=−κ c2

ex divvvvex, (1.8)

using (1.6), where κ is the ratio of the coefficient of thermal expansion to the specific

heat at constant pressure (κ = β/cp in Batchelor’s notation [57]).

1.1.1 Linearisation: Ambient Flows

Consider an ambient flow in which vvvex = UUU , a constant velocity. (The case UUU = 0

will be of most interest to us.) For such a flow, let ρex = ρ0, pex = p0, Eex = E0,

Tex = T0, c2
ex = c2

0 and hex = h0. We have p0 = pex(ρ0,E0), c2
0 = c2

ex(ρ0,E0) and h0 =

hex(ρ0,E0). Then (1.1), (1.2), (1.3), (1.6) and (1.8) give the following constraints on

the ambient flow,

Dρ0

Dt
= 0, grad p0 = 0,

DE0

Dt
= 0,

D p0

Dt
= 0 and

DT0

Dt
= 0, (1.9)
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1.1 Governing Equations 3

where D f/Dt = ∂ f/∂ t +UUU ·grad f . Combining (1.9)2 and (1.9)4 shows that p0 is a

constant, whereas (1.5) gives

grad p0 = c2
0 gradρ0 +h0 gradE0 = 0. (1.10)

The easiest way to satisfy (1.9)3 and (1.9)5 is to suppose that E0 and T0 are con-

stants. Then (1.9)1 and (1.10) imply that ρ0 is constant. In this situation, we say the

fluid is homogeneous: its properties do not vary with position (or time).

1.1.2 Linearisation: Acoustics

For linear acoustics, we consider small perturbations about the ambient state, and

write

pex = p0 + ε p1 + · · · , ρex = ρ0 + ερ1 + · · · , vvvex =UUU + εvvv1 + · · · ,

Eex = E0 + εE1 + · · · , cex = c0 + εc1 + · · · , hex = h0 + εh1 + · · · ,

where ε is a small parameter. Substitution in the equation of state (1.4) gives

pex(ρex,Eex) = pex(ρ0 + ερ1 + · · · , E0 + εE1 + · · ·)

= pex(ρ0,E0)+ ερ1
∂ pex

∂ρex
(ρ0,E0)+ εE1

∂ pex

∂Eex
(ρ0,E0)+ · · · ,

giving p0 = pex(ρ0,E0) and

p1 = c2
0ρ1 +h0E1 with c2

0 = c2
ex(ρ0,E0) and h0 = hex(ρ0,E0).

Substitution in (1.1), (1.2), (1.3) and (1.8) gives, at first order in ε ,

Dρ1

Dt
+div(ρ0vvv1) = 0, ρ0

Dvvv1

Dt
+grad p1 = 0, (1.11)

DE1

Dt
+ vvv1 ·gradE0 = 0,

DT1

Dt
+ vvv1 ·gradT0 =−κ c2

0T0 divvvv1. (1.12)

We are mainly interested in perturbations from the ambient state. Therefore we

define the excess pressure p by pex = p0+ p, and we accept the linear approximation,

giving p = ε p1. We make similar definitions for other relevant quantities. Thus

p = pex − p0 = ε p1, vvv = vvvex −UUU = εvvv1,

ρ̃ = ρex −ρ0 = ερ1, Ẽ = Eex −E0 = εE1, T̃ = Tex −T0 = εT1.

The equations relating these quantities are readily found, making use of (1.9). They

are

p = c2
0ρ̃ +h0Ẽ,

D ρ̃

Dt
+div(ρ0vvv) = 0, ρ0

Dvvv

Dt
+grad p = 0, (1.13)

D Ẽ

Dt
+ vvv ·gradE0 = 0,

D T̃

Dt
+ vvv ·gradT0 =−κ c2

0T0 divvvv. (1.14)

These are the basic equations for acoustic small-amplitude perturbations. We exam-

ine several special cases below.
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4 Acoustics and the Wave Equation

1.1.3 Zero Ambient Velocity: Bergmann’s Equation

When UUU = 0, (1.9) implies that ρ0, E0 and T0 do not depend on t, whereas p0 is

a constant. The constraint (1.10) permits us to have spatial variations in c2
0 and ρ0

within a stationary fluid (but not if E0 is constant).

For the acoustic perturbation, (1.13) and (1.14) give

∂ ρ̃

∂ t
+div(ρ0vvv) = 0, ρ0

∂vvv

∂ t
+grad p = 0,

∂ Ẽ

∂ t
+ vvv ·gradE0 = 0. (1.15)

As p = c2
0ρ̃ + h0Ẽ in which c2

0 and h0 do not depend on t, we can combine (1.15)1

and (1.15)3 to give

∂ p

∂ t
+ c2

0 div(ρ0vvv)+h0 vvv ·gradE0 = 0. (1.16)

Eliminating h0 gradE0 using (1.10), we obtain

∂ p

∂ t
+ρ0c2

0 divvvv = 0. (1.17)

Finally, eliminating vvv, using the second of (1.15), gives

ρ0 div
(
ρ−1

0 grad p
)
=

1

c2
0

∂ 2 p

∂ t2
, (1.18)

in which ρ0(rrr) and c2
0(rrr) can be functions of position rrr = (x,y,z) (but not of t). This

is Bergmann’s equation for the (excess) pressure [97, eqn (14)], [518, eqn (76.1)],

[797, eqn (5.15)].

Suppose that the motion is known to be irrotational, meaning that the vorticity

ωωω = curlvvv = 0. Then we can write vvv = gradu, where u is a velocity potential. (Note

that some authors prefer to write vvv = −gradu; see, for example, [516, §285] and

[644, §6.1].) It follows from (1.15)2 that p =−ρ0(rrr)∂u/∂ t and then (1.17) yields

∇
2u =

1

c2
0(rrr)

∂ 2u

∂ t2
. (1.19)

1.1.4 Zero Ambient Velocity and Constant Ambient Density

When UUU = 0 and ρ0 is a constant, Bergmann’s equation (1.18) reduces to

∇
2 p =

1

c2
0(rrr)

∂ 2 p

∂ t2
. (1.20)

As ρ0 is constant, taking the curl of (1.15)2 shows that the vorticity ωωω = curlvvv does

not depend on t. Therefore if the motion starts from a state in which vvv is constant,

then ωωω = 0: the motion is irrotational, and we can write vvv = gradu. Then, as in

Section 1.1.3, we have p = −ρ0 ∂u/∂ t, whereas (1.20) shows that u satisfies the

wave equation (1.19).

Note that irrotationality was assumed in Section 1.1.3 in order to obtain (1.19),

whereas it can be proved when ρ0 is constant.
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1.1 Governing Equations 5

Equation (1.19) often appears in the context of seismic inversion (‘migration’);

see, for example, [737], [797, eqn (5.9)]. It also appears in other imaging contexts

[720, 521, 653], [326, eqn (2.1)]. Stochastic versions of (1.20), in which c2
0(rrr) is

a random function of position, have also been studied and used; see, for example,

[655], [786, eqn (3.17)], [326, eqn (12.1)] and [116].

1.1.5 Zero Ambient Velocity and Homogeneous Fluid

This is the textbook case, in which ρ0 ≡ ρ and c0 ≡ c are constants and UUU = 0. In

most of the book, we shall be concerned with this case.

The governing equations are the wave equation,

∇
2u =

1

c2

∂ 2u

∂ t2
, (1.21)

for the velocity potential u, together with p = −ρ ∂u/∂ t and vvv = gradu. Evidently,

p and any Cartesian component of vvv also solve the wave equation.

A simpler derivation of the governing equations can be given when the fluid is

homogeneous, a derivation in which the entropy does not play a role. We take an

equation of state which says that pex is a function of ρex, pex = pex(ρex). Let ρex = ρ

and pex = p0 when there is no motion, vvvex = 0. Then (1.1) and (1.2) imply that p0

is a constant and ρ does not depend on t. Then, in the notation of Section 1.1.2, we

find that

p1 = c2ρ1, where c2 = p′ex(ρ) (1.22)

is the (constant) speed of sound. Also, from (1.1) and (1.2), we obtain

∂ρ1

∂ t
+ρ divvvv1 = 0 and ρ

∂vvv1

∂ t
+grad p1 = 0. (1.23)

Eliminating vvv1 gives

∇
2 p1 =

∂ 2ρ1

∂ t2
=

1

c2

∂ 2 p1

∂ t2
. (1.24)

The rest of the derivation, leading to (1.21), proceeds as before. For more details

on the derivation of the equations above, see, for example, [644, Chapter 6], [559,

Chapter 1], [518, §64] or [696, Chapter 1].

1.1.6 Non-Zero Ambient Velocity and Homogeneous Fluid

In this case, the governing equations are (1.13) and (1.14), in which ρ0 ≡ ρ , c0 ≡ c,

h0 and E0 are constants:

p = c2ρ̃ +h0Ẽ,
D ρ̃

Dt
+ρ divvvv = 0,

D Ẽ

Dt
= 0, ρ

Dvvv

Dt
+grad p = 0. (1.25)

The first three of these give

D p

Dt
=−ρc2 divvvv
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6 Acoustics and the Wave Equation

from which we can eliminate vvv using (1.25)4 to obtain

∇
2 p =

1

c2

D2 p

Dt2
=

1

c2

(
∂

∂ t
+UUU ·grad

)2

p. (1.26)

This is the convected wave equation [697, eqn (6)], [421, eqn (1.6.30)]. If the flow

is irrotational, with vvv = gradu, we find that the potential u also satisfies (1.26) with

p=−ρ(∂u/∂ t+UUU ·gradu). Applications of (1.26) will be mentioned in Section 7.5.

As the fluid is homogeneous and UUU is a constant vector, we can also obtain (1.26)

using a Galilean transformation. Thus, if (rrr, t) is a fixed frame in which the ambient

velocity is UUU , introduce a translating frame (rrr′, t ′) with rrr = rrr′+UUUt ′ and t = t ′. The

chain rule gives, for example, ∂u/∂x′ = ∂u/∂x, ∂ 2u/∂x′2 = ∂ 2u/∂x2 and ∂u/∂ t ′ =

∂u/∂ t+UUU ·gradu. Hence, if u satisfies the wave equation with rrr′ =(x′,y′,z′) and t ′ as

independent variables, then u satisfies the convected wave equation with independent

variables rrr = (x,y,z) and t.

Equation (1.26) was used by Tatarski [814, eqn (5.1)] with UUU replaced by UUU(rrr), the

local ambient velocity at position rrr; see also [697, eqn (4)]. There are other versions

of the convected wave equation that are intended for inhomogeneous fluids with a

non-uniform ambient flow; see [697, 675, 146] and Section 1.1.7.

1.1.7 Non-Uniform Ambient Flows and Dynamic Materials

Sound transmission through a fluctuating ocean [302] exemplifies a problem in

which the ambient flow is non-uniform in both space and time. We have already

seen examples in which the background medium varies spatially (Section 1.1.3) but

not in time. Media with temporal variations may be called dynamic materials. Such

materials arise naturally (the oceans and the atmosphere are obvious examples) but

there is also a growing interest in their creation. For some background and many

applications, see [723, 582].

Perhaps the simplest model of dynamic materials is obtained by allowing c to be

a function of time, giving [157]

∇
2w =

1

c2(t)

∂ 2w

∂ t2
. (1.27)

More generally, models of the form div{a(rrr, t)gradw} = ∂ 2w/∂ t2 have been used

[585]. In such models, including (1.27), no physical meaning is attributed to w. For

some related one-dimensional studies, see [292, 755, 2, 891].

Pierce’s Equation

For acoustic problems, Pierce [697] has derived a Bergmann-like wave equation, un-

der certain assumptions about the dynamic medium: he assumes that it is ‘slowly

varying with position over distances comparable to a representative acoustic wave-

length and that it is slowly varying with time over times comparable to a represen-

tative acoustic period’ [697, p. 2293]. A stochastic version of Pierce’s equation has

been used recently [117].
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1.1 Governing Equations 7

For zero ambient velocity (UUU = 0), Pierce’s equation [697, eqn (23)] reduces to

1

ρ0(rrr)
div{ρ0(rrr)gradu}=

∂

∂ t

(
1

c2
0(rrr, t)

∂u

∂ t

)
, (1.28)

where u(rrr, t) is a velocity potential: vvv = grad u and p =−ρ0 ∂u/∂ t. Equation (1.28)

is W3 in the collection compiled by Campos [146]. Flatté [302, eqn (5.1.11) with

eqn (6.1.1)] uses another equation for u,

∇
2u =

1

c2
0(rrr, t)

∂ 2u

∂ t2
, (1.29)

which reduces to Bergmann’s equation (1.19) when c2
0 does not depend on t. It has

been remarked that the ‘apparent simplicity of linearity [in (1.29)] is superseded by

the complexity brought in by space-time inhomogeneity and [is] pregnant of exotic

wave-like effects’ [723, p. 928].

Note that we have written ρ0(rrr) in (1.28), not ρ0(rrr, t). This is because we showed

in Section 1.1.3 that conservation of mass combined with UUU = 0 implies that ρ0

cannot depend on t. In other words, if we want to have ρ0(rrr, t), then we must have a

moving ambient flow or we must abandon conservation of mass.

Note also that if c2
0 does not depend on t, then (1.28) does not reduce to Berg-

mann’s equation (1.19). Pierce [697, eqn (30)] attributes the discrepancy to a second-

order effect that may be discarded.

In [39], the authors model a dynamic material by modifying Bergmann’s equation

(1.18), which we write as

div

(
1

ρ0(rrr)
grad p

)
= κ0(rrr)

∂ 2 p

∂ t2
, (1.30)

in which κ0 =(ρ0c2
0)

−1 is the (adiabatic) compressibility [696, p. 30]. In [39, eqn (4)],

(1.30) is used but with ρ0(rrr, t) in place of ρ0(rrr). We have seen that such an equation

is inconsistent with conservation of mass. This provides one motivation for relax-

ing the constraint of mass conservation. Another comes from continuum models of

growing materials [349, Part IV], [260].

Exponential Growth

Let us abandon conservation of mass, replacing (1.1) by

Dρex

Dt
+ρex divvvvex = ρexγ, (1.31)

where γ(rrr) is a given function of position, the growth rate function; for this model,

see [349, eqn (13.5)]. We retain the other governing equations, namely (1.2), (1.3)

and (1.4).

Linearising about an ambient state in which UUU = 0 (and ignoring any temperature

dependence), we find that p0 is constant, E0 does not depend on t and

∂ρ0

∂ t
= ρ0γ whence ρ0(rrr, t) = ρ00(rrr)etγ(rrr), (1.32)
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8 Acoustics and the Wave Equation

where ρ00(rrr) = ρ0(rrr,0). As (1.10) also holds, we substitute ρ0 and obtain

µ eγt (gradρ00 + tρ00 gradγ)+gradE0 = 0

where µ(rrr, t) = c2
0/h0. To eliminate the term containing tρ00, we are forced to take

gradγ(rrr) = 0: γ is a constant, γ0, say. Then, we infer that µ eγ0t cannot depend on t,

whence

µ(rrr, t) = µ0(rrr)e−γ0t (1.33)

and κ−1
0 = ρ0c2

0 = ρ0µh0 = ρ00(rrr)µ0(rrr)hex(ρ0(rrr, t),E0(rrr)), which depends on t, in

general.

For the acoustic perturbation, we obtain a slightly modified form of (1.15):

∂ ρ̃

∂ t
+div(ρ0vvv) = ρ̃γ0, ρ0

∂vvv

∂ t
+grad p = 0, (1.34)

p = c2
0ρ̃ +h0Ẽ,

∂ Ẽ

∂ t
+ vvv ·gradE0 = 0. (1.35)

As E0 does not depend on t, differentiating (1.35)2 gives

∂ 2Ẽ

∂ t2
=−

∂vvv

∂ t
·gradE0 =

1

ρ0
(grad p) · (gradE0)

after use of (1.34)2. Eliminating Ẽ using (1.35)1 and gradE0 using (1.10), we arrive

at

h0

c2
0

∂ 2

∂ t2

(
p− c2

0ρ̃

h0

)
=−

1

ρ0
(grad p) · (gradρ0), (1.36)

which is an equation relating p and ρ̃ .

For a second equation, we start by integrating (1.34)2. Let ggg(rrr, t) = ρ−1
0 grad p and

suppose that vvv(rrr,0) = 0. Then

vvv(rrr, t) =−
∫ t

0
ggg(rrr,τ)dτ. (1.37)

We substitute this expression in (1.34)1:

∂ ρ̃

∂ t
− ρ̃γ0 = div

(
ρ0(rrr, t)

∫ t

0
ggg(rrr,τ)dτ

)
= F(rrr, t), (1.38)

say. Assuming that ρ̃(rrr,0) = 0, we can solve for ρ̃:

ρ̃(rrr, t) =
∫ t

0
eγ0(t−τ ′)F(rrr,τ ′)dτ ′. (1.39)

Hence ∂ ρ̃/∂ t = F + γ0ρ̃ and ∂ 2ρ̃/∂ t2 = ∂F/∂ t + γ0F + γ2
0 ρ̃ . Using these relations,

we substitute (1.39) in (1.36), recalling that µ(rrr, t) = c2
0/h0 is given by (1.33):

1

µ

∂ 2(µρ̃)

∂ t2
=

∂ 2ρ̃

∂ t2
+

2

µ

∂ µ

∂ t

∂ ρ̃

∂ t
+

ρ̃

µ

∂ 2µ

∂ t2
=

∂F

∂ t
− γ0F. (1.40)
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1.1 Governing Equations 9

Next, let us evaluate F , defined by (1.38). Making use of (1.32)2,

F(rrr, t) = div

∫ t

0
eγ0(t−τ) grad p(rrr,τ)dτ =

∫ t

0
eγ0(t−τ)

∇
2 p(rrr,τ)dτ.

Hence

∂F

∂ t
= ∇

2 p+ γ0

∫ t

0
eγ0(t−τ)

∇
2 pdτ = ∇

2 p+ γ0F. (1.41)

Using (1.40) and (1.41), (1.36) becomes

h0

c2
0

∂ 2

∂ t2

(
p

h0

)
=

1

µ

∂ 2(µρ̃)

∂ t2
−

1

ρ0
(grad p) · (gradρ0) = ρ0 div

(
grad p

ρ0

)
. (1.42)

Evidently, this is a generalisation of Bergmann’s equation (1.18).

More General Growth Models

We have seen that if we start from (1.31) with growth rate function γ(rrr), then we

are forced to take γ = γ0, a constant, so that spatial variation of γ is lost. For a more

general model, we could replace (1.31) with

Dρex

Dt
+ρex divvvvex = ρex

∂η

∂ t
, (1.43)

where η(rrr, t) is specified. Proceeding as with the model (1.31), it turns out that p(rrr, t)

satisfies a complicated integrodifferential equation; see [604] for details.

Further growth models could be developed. Notice that the model (1.43) is simple

(and linear in ρex), so there is plenty of scope for alternative models.

No Growth Model at All: Specify the Background Density

Instead of replacing conservation of mass by a growth model, such as (1.31) or

(1.43), let us simply specify ρ0(rrr, t), assuming that this specification is contrived

by some external means. This is a plausible approach if we wish to create dynamic

materials. As before, we take UUU = 0, and we find that p0 is constant and ∂E0/∂ t = 0.

Then, from (1.6), we obtain

0 =
∂ p0

∂ t
= c2

0

∂ρ0

∂ t
+h0

∂E0

∂ t
,

which reduces to ∂ρ0/∂ t = 0. In other words, if we want ∂ρ0/∂ t 6= 0, then we must

modify (1.3), DEex/Dt = 0. This could be done, perhaps by retaining temperature

effects [57, eqn (3.6.3)], [696, eqn (1-4.6)]. However, as far as we know, this option

has not been contemplated.

Final Comments

The discussion in this section is essentially exact, within the limits of perturbation

theory. We have not introduced additional approximations, such as those arising from

relevant time scales. For example, the time scale associated with acoustic distur-

bances is much shorter than those associated with biological growth [349, §13.1].
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10 Acoustics and the Wave Equation

Nevertheless, we should keep in mind that technological progress may lead to dy-

namic materials that can change rapidly, thereby making material and acoustic time

scales comparable.

1.1.8 Nonlinear Acoustics

The linear equations derived above are sufficient for most of what follows. However,

occasionally, an exact formulation is needed. If we restrict to flows that are irro-

tational (curlvvvex = 0) and homentropic (Eex is constant), an exact equation for the

exact velocity potential uex can be derived,

C
2
∇

2uex −
∂ 2uex

∂ t2
=

∂v2
ex

∂ t
+

1

2
vvvex ·gradv2

ex, (1.44)

where vvvex = graduex and vex = |vvvex|. The quantity C 2 depends on the fluid and the

flow. For a polytropic gas with ratio of specific heats γ , we have

C
2 = c2

ex − (γ −1)

(
∂uex

∂ t
+

1

2
v2

ex

)
, (1.45)

where c2
ex is the usual speed of sound, (1.7). Substituting (1.45) and vvvex = graduex

in (1.44) gives a complicated nonlinear partial differential equation for the velocity

potential uex. For a derivation of (1.44) and (1.45), see [384, §3.2] or [161, §4.4].

Equations (1.44) and (1.45) were written down in a paper by Longhorn [569, §6].

An equation similar to (1.44) can be found in [108, eqn (1.85)]. Equations (1.44) and

(1.45) provide a firm foundation for quantifying nonlinear effects arising from invis-

cid, irrotational, compressible flows generated by the motions of spherical objects,

for example; see [569, 317, 544]. For direct numerical simulation of such flows, see

[683]. For nonlinear acoustics generally, see [383, 257], for example.

1.2 Acoustic Scattering

We have seen (Section 1.1.5) that linear acoustics in a homogeneous inviscid com-

pressible fluid is governed by the wave equation. In three dimensions, this equation

is

∇
2u ≡

∂ 2u

∂x2
+

∂ 2u

∂y2
+

∂ 2u

∂ z2
=

1

c2

∂ 2u

∂ t2
, (1.46)

where x, y and z are Cartesian coordinates, t is time and c is the (positive) constant

speed of sound. We always consider u to be a velocity potential, so that the velocity

and (excess) pressure in the fluid are given by

vvv = gradu and p =−ρ
∂u

∂ t
, (1.47)

respectively, where ρ is the constant ambient density of the fluid. Solutions of (1.46)

are called wavefunctions.
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