

Cambridge Tracts in Theoretical Computer Science 62

Initial Algebras and Terminal Coalgebras

Providing an in-depth treatment of an exciting research area, this text's central topics are initial algebras and terminal coalgebras, primary objects of study in all areas of theoretical computer science connected to semantics.

It contains a thorough presentation of iterative constructions, giving both classical and new results on terminal coalgebras obtained by limits of canonical chains and initial algebras obtained by colimits. These constructions are also developed in enriched settings, especially those enriched over complete partial orders and over complete metric spaces, connecting the book to topics such as domain theory. Also included are an extensive treatment of set functors and the first book-length presentation of the rational fixed point of a functor and of lifting results that connect fixed points of set functors with fixed points of endofunctors on other categories.

Representing more than 15 years of work, this will be the leading text on the subject for years to come.

JIŘÍ ADÁMEK is Professor in the Department of Mathematics at Czech Technical University in Prague and Professor Emeritus in the Department of Computer Science at Technical University Braunschweig.

STEFAN MILIUS is Professor in the Department of Computer Science at Friedrich-Alexander-Universität Erlangen-Nürnberg.

 ${\tt LAWRENCE~S.~MOSS} \ is \ Professor \ in \ the \ Mathematics \ Department \ at \ Indiana \ University \ Bloomington.$

CAMBRIDGE TRACTS IN THEORETICAL COMPUTER SCIENCE 62

Titles in the series

A complete list of books in the series can be found at www.cambridge.org/computer-science.

Recent titles include the following:

- 32. R. Carpenter The Logic of Typed Feature Structures
- 33. E. G. Manes Predicate Transformer Semantics
- 34. F. Nielson & H. R. Nielson Two-Level Functional Languages
- 35. L. M. G. Feijs & H. B. M. Jonkers Formal Specification and Design
- 36. S. Mauw & G. J. Veltink (eds) Algebraic Specification of Communication Protocols
- 37. V. Stavridou Formal Methods in Circuit Design
- 38. N. Shankar Metamathematics, Machines and Gödel's Proof
- 39. J. B. Paris The Uncertain Reasoner's Companion
- 40. J. Desel & J. Esparza Free Choice Petri Nets
- 41. J.-J. Ch. Meyer & W. van der Hoek Epistemic Logic for AI and Computer Science
- 42. J. R. Hindley Basic Simple Type Theory
- 43. A. S. Troelstra & H. Schwichtenberg Basic Proof Theory
- 44. J. Barwise & J. Seligman Information Flow
- 45. A. Asperti & S. Guerrini The Optimal Implementation of Functional Programming Languages
- 46. R. M. Amadio & P.-L. Curien Domains and Lambda-Calculi
- 47. W.-P. de Roever & K. Engelhardt Data Refinement
- 48. H. Kleine Büning & T. Lettmann Propositional Logic
- 49. L. Novak & A. Gibbons Hybrid Graph Theory and Network Analysis
- J. C. M. Baeten, T. Basten & M. A. Reniers Process Algebra: Equational Theories of Communicating Processes
- 51. H. Simmons Derivation and Computation
- 52. D. Sangiorgi & J. Rutten (eds) Advanced Topics in Bisimulation and Coinduction
- 53. P. Blackburn, M. de Rijke & Y. Venema *Modal Logic*
- 54. W.-P. de Roever et al. Concurrency Verification
- 55. Terese Term Rewriting Systems
- 56. A. Bundy et al. Rippling: Meta-Level Guidance for Mathematical Reasoning
- 57. A. M. Pitts Nominal Sets
- 58. S. Demri, V. Goranko & M. Lange Temporal Logics in Computer Science
- 59. B. Jacobs Introduction to Coalgebra
- 60. S. Mihov & K. U. Schulz Finite-State Technology
- 61. M. Gehrke & S. van Gool Topological Duality for Distributive Lattices

Initial Algebras and Terminal Coalgebras

The Theory of Fixed Points of Functors

JIŘÍ ADÁMEK

Czech Technical University in Prague and Technical University Braunschweig

STEFAN MILIUS

Friedrich-Alexander-Universität Erlangen-Nürnberg

LAWRENCE S. MOSS Indiana University Bloomington

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108835466

DOI: 10.1017/9781108884112

© Jiří Adámek, Stefan Milius, and Lawrence S. Moss 2025

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781108884112

First published 2025

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Names: Adámek, Jiří, 1947– author. | Milius, Stefan, author. |
Moss, Lawrence Stuart, 1959– author.

Title: Initial algebras and terminal coalgebras: the theory of fixed points of functors / Jiří Adámek (Czech Technical University in Prague), Stefan Milius (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany), Lawrence S. Moss (Indiana University, Bloomington).

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2025. | Series: Cambridge tracts in theoretical computer science; 62 | Includes bibliographical references and index. Identifiers: LCCN 2024011074 | ISBN 9781108835466 (hardback) |

ISBN 9781108884112 (ebook)

Subjects: LCSH: Categories (Mathematics) | Recursion theory. | Induction (Mathematics) | Fixed point theory. | Duality theory (Mathematics)

Classification: LCC QA169 .A31994 2025 | DDC 512/.62–dc23/eng/20240628 LC record available at https://lccn.loc.gov/2024011074

ISBN 978-1-108-83546-6 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To the memory of Věra Trnková.

Contents

	Preface		page x1	
1	Introduction			
	1.1	Why Are Initial Algebras and Terminal Coalgebras		
		Interesting?	1	
	1.2	Expected Background	6	
	1.3	Fixed Points and Special Kinds of Algebras and Coalgebras	8	
	1.4	Algebraic versus Coalgebraic Concepts	10	
2	Algebras and Coalgebras		12	
	2.1	Algebras	12	
	2.2	Initial Algebras	21	
	2.3	Recursion and Induction	33	
	2.4	Coalgebras	36	
	2.5	Terminal Coalgebras	46	
	2.6	Corecursion and Bisimulation	54	
	2.7	Summary	64	
3	Finitary Iteration		65	
	3.1	Initial-Algebra Chain	65	
	3.2	Examples of Initial Algebras	69	
	3.3	Terminal-Coalgebra Chain	81	
	3.4	Summary	89	
4	Finitary Set Functors		90	
	4.1	Limits and Colimits of Algebras and Coalgebras	91	
	4.2	Weakly Terminal Coalgebras	95	
	4.3	Presentation of Finitary Set Functors	101	
	4.4	Iterating the Terminal-Coalgebra Chain to $\omega + \omega$	113	

viii		Contents	
	4.5	Finite Power-Set Functor: The Terminal Coalgebra	100
	4.6	vs. the ω^{op} -Limit Summary	122 132
_		·	
5	5.1	tary Iteration in Enriched Settings	133
	5.2	Canonical Fixed Points in CPO-Enriched Categories CMet-Enriched Categories	135 151
	5.3	Solving Domain Equations	161
	5.4	Summary	166
6		assinite Iteration	167
v	6.1	The Initial-Algebra Chain	169
	6.2	Smooth Monomorphisms	177
	6.3	The Initial-Algebra Theorem	185
	6.4	Characterization of Varietors on Set	191
	6.5	The Terminal-Coalgebra Chain	193
	6.6	Subfunctors and Quotient Functors	202
	6.7	Canonical Fixed Points in CPO-Enriched Categories	210
	6.8	Summary	213
7	Terminal Coalgebras as Algebras, Initial Algebras as Coalge-		
	bras		215
	7.1	Corecursive Algebras	218
	7.2	Terminal Coalgebras from Corecursive Algebras	224
	7.3	Completely Iterative Algebras	230
	7.4	Recursive Coalgebras	243
	7.5	The Initial-Algebra Theorem Revisited	250
	7.6	Summary	252
8	Well	-Founded Coalgebras	253
	8.1	Well-Founded Coalgebras and Well-Founded Graphs	254
	8.2	The Next-Time Operator on Coalgebras	263
	8.3	The Well-Founded Part of a Coalgebra	270
	8.4	Closure Properties of Well-Founded Coalgebras	274
	8.5	The General Recursion Theorem	279
	8.6	The Converse of the General Recursion Theorem	285
	8.7	Summary	292
9	State Minimality and Well-Pointed Coalgebras		293
	9.1	Simple Coalgebras	294
	9.2	Pointed and Reachable Coalgebras	297
	9.3	Well-Pointed Coalgebras	309
	9.4	Summary	318

		Contents	ix	
10	Fixed	Points Determined by Finite Behaviour	319	
	10.1	Locally Finitely Presentable Categories	320	
	10.2	The Rational Fixed Point	326	
	10.3	Iterative Algebras	336	
	10.4	The Rational Fixed Point of a Set Functor	345	
	10.5	Full Abstractness and Finitely Generated Objects	347	
	10.6	Beyond the Rational Fixed Point	360	
	10.7	Summary	362	
11	Sufficient Conditions for Initial Algebras and Terminal Coal-			
	gebra	as	363	
	11.1	Bounded Functors	363	
	11.2	Accessible Functors	365	
	11.3	Presentability of Algebras and Coalgebras	376	
	11.4	Preaccessible Functors	383	
	11.5	Adjunctions	391	
	11.6	Summary	396	
12	Liftings and Extensions from Set		398	
	12.1	Complete Partial Orders	399	
	12.2	Complete Metric Spaces and Pseudometric Spaces	401	
	12.3	Kleisli Categories	408	
	12.4	Relation Liftings	426	
	12.5	Eilenberg-Moore Algebras	428	
	12.6	Connecting Coalgebraic Trace and Language Semantics	439	
	12.7	Coalgebraic Language Semantics as a Quotient	445	
	12.8	Summary	458	
13	Inter	action between Initial Algebras and Terminal Coalgebras	461	
	13.1	Canonical Morphism	462	
	13.2	Cauchy Completion	464	
	13.3	Ideal Completion	472	
	13.4	Summary	476	
14	Derived Functors		477	
	14.1	Coproducts and Products with a Constant Functor	477	
	14.2	Composite Functors	484	
	14.3	Relatively Terminal Coalgebras	488	
	14.4	Mutual Recursion	489	
	14.5	Parametric Fixed Points	491	
	14.6	Initial Double-Algebras	501	
	14.7	Coproducts of Monads on Set	505	
	14.8	Summary	508	

X		Contents	
15	Specia	al Topics	510
	15.1	Variations on Cantor's Theorem	510
	15.2	Vietoris Polynomial Functors on Topological Spaces	514
	15.3	Hausdorff Polynomial Functors on Metric Spaces	520
	15.4	The Interval [0, 1] as a Terminal Coalgebra	524
	15.5	Terminal Coalgebras Related to Subsets of the Reals	527
	15.6	Summary	535
Appe	ndix A	Functors with Initial Algebras or Terminal Coalge-	
**	bras		537
Appe	ndix B	A Primer on Fixed Points in Ordered and Metric	
	Struc	tures	541
	B.1	Fixed Points in Posets	541
	B.2	Pataraia's Theorem	546
	B.3	Fixed Points in Complete Metric Spaces	550
Appendix C		Set Functors	552
	C.1	Examples of Set Functors	552
	C.2	Basic Facts	553
	C.3	Common Preservation Properties	555
	C.4	Monoid-Valued Functors	568
	C.5	Finitary Set Functors	574
	C.6	Trnková Hull	579
	C.7	Standard Functors	586
	C.8	Accessible and Bounded Functors	589
	C.9	Accessible Coreflection	593
	Refere	ences	598
List of C		f Categories	617
	Index		618

Preface

Initial algebras for endofunctors on a category have been used since the 1970s in algebraic specification and for the semantics of inductive data types definitions. They provide a generic framework to study notions such as recursive function definitions and proofs by structural induction. This has been developed for example in the work of the ADJ group in the 1970s on initial-algebra semantics of abstract data types [143]. Domain theory is another example. Dana Scott's model of the lambda calculus [273] works with initial algebras for endofunctors on the category of domains or complete partial orders [138]. This usage developed into Michael Smyth and Gordon Plotkin's treatment of the solution of recursive domain equations [279]. The 1980s and 90s saw the further development of such topics and their treatment in textbooks such as Ernest Manes and Michael Arbib's book [220] on algebraic semantics of programming, and Samson Abramsky and Achim Jung's survey of domain theory [2].

At the turn of the new millennium, the dual concept, coalgebras for endofunctors, attracted increased attention. While the study of coalgebras had its roots in earlier work parallel to algebras, it was sparked in earnest by Peter Aczel's book [3] on non-well-founded sets, where coalgebras were mentioned at the end. His observation was that the infinite processes that we see in theoretical computer science may be profitably studied as elements of the terminal coalgebra, with specifications of them coming from other coalgebras. He and Nax Mendler also exhibited Robin Milner and David Park's notion of bisimulation from process algebra as a coalgebraic notion. This then led to the breakthrough essay on coalgebras as a theory of systems, Jan Rutten's seminal paper [264]. It demonstrated that many types of state-based systems studied in fields such as automata theory, concurrency, and verification arise as examples of coalgebras for endofunctors. Moreover, the terminal coalgebra yields a fully abstract domain for the behaviour of states of systems. This laid the basis for the new subject of *universal coalgebra*. In the 2000s the subject then rapidly developed and

xii Preface

has unified a host of topics that looked similar but were not always understood that way. These were topics from theoretical computer science and logic like automata theory, process calculi, streams, non-well-founded sets, and modal logic, and also areas of mathematics such as power series. Meanwhile universal coalgebra has become a diverse research field offering a generic framework for the semantics of state-based systems, specification and proof principles such as corecursion and coinduction, and the development of coalgebraic logics. In the last few years, generic methods and algorithms for reasoning, model checking, minimization and learning of coalgebras have become a focus of research. Coalgebra continues to be a lively and active area of research, and we hope to offer our readers a source that will help them to enter the field.

Throughout this development it has been the pull of category theory that has provided the language and conceptual apparatus that is needed to unify topics and pose new questions. Therefore, the aim of our book is to give a category-theoretic account of initial algebras, terminal coalgebras, and, as the title of our book suggests, to pursue the topic of fixed points of functors more generally. We also put a focus on the interplay of algebras and coalgebras, a feature that most other texts on those subjects miss, treating one or the other only. Many of the results in this book are stated and proved for categories that go beyond the category of sets, e.g. complete posets and complete metric spaces. Furthermore, we use special features of the category of sets such as presentations of finitary functors and transfinite recursion. We frequently call on facts about set functors, so much so that we have decided to provide an appendix on this topic. A number of these facts are based on work by the Prague mathematical community, especially Věra Trnková and her colleagues and students Vacláv Koubek and Jan Reiterman. To make this more 'accessible' for readers not so familiar with it, we provide some background on those topics as needed.

The central topics of our book are:

- (1) The iterative constructions of initial algebras and terminal algebras as colimits of chains and limits of op-chains, respectively. We discuss this at great length, providing hosts of concrete examples and developing generalizations to the transfinite setting. We also develop the enriched setting, in particular, enrichment over the categories of complete partial orders and of complete metric spaces, that has been so useful in topics like domain theory.
- (2) Initial algebras and terminal coalgebras of finitary functors, and accessible functors more generally. For example, we develop and extend the work of James Worrell [316, 318] on the terminal coalgebra of accessible set functors.
- (3) Categorical recursion theory, especially corecursion, completely iterative algebras and well-founded coalgebras. This not only connects our subject to the

Preface xiii

past but also highlights topics that we believe will be ever more important in the future.

(4) The relations between various fixed points. In particular, we treat the *rational fixed point* of a functor, which is a fully abstract domain of 'finite-state' behaviour with instances such as the regular languages from automata theory. Here again we go beyond sets for most results.

It has been said that there never is a good time to write a book about anything, and this is especially true of a book coming from an active research field. We are not only trying to summarize algebra, coalgebra and related fields, we are also contributing to them. Some of the results in this book appear here for the first time, and in many other cases we have revised our text in order to develop a subject that only came into existence a few years ago. We hope that an up-to-the-moment book itself will prove useful to the reader.

We have tried hard to be scholarly about the history of results, and we hope that those whose work was not mentioned correctly, or at all, will forgive us.

We have neglected several topics that are near and dear to the hearts of many in the coalgebra community. We did this partly to keep the book of reasonable length, and partly because those topics are already treated in books. In particular, we are thinking of bisimulation and of coalgebraic modal logic. Bisimulation is treated in Bart Jacob's 2016 book [173]; that book also has a lot of material on another topic which we do not treat: predicate liftings. Coalgebraic modal logic is the topic of Dirk Pattinson and Lutz Schröder's forthcoming book. In addition, one also should read Jan Rutten's *The Method of Coalgebra: Exercises in Coinduction* [268]. These are all excellent resources, and they will be especially useful for newcomers to the subject.

But now we hope our readers will have as much fun with this book as we have had in writing it.

Jiří Adámek Stefan Milius Lawrence S. Moss