

Foundations of Constructive Probability Theory

Using Bishop's work on constructive analysis as a framework, this monograph gives a systematic, detailed, and general constructive theory of probability theory and stochastic processes. It is the first extended account of this theory: Almost all of the constructive existence and continuity theorems that permeate the book are original. It also contains results and methods hitherto unknown in the constructive and nonconstructive settings. The text features logic only in the common sense and, beyond a certain mathematical maturity, requires no prior training in either constructive mathematics or probability theory. It will thus be accessible and of interest to both probabilists interested in the foundations of their specialty and constructive mathematicians who wish to see Bishop's theory applied to a particular field.

YUEN-KWOK CHAN completed a PhD in constructive mathematics with Errett Bishop before leaving academia for a career in private industry. He is now an independent researcher in probability and its applications.

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their subjects comprehensively. Less important results may be summarized as exercises at the ends of chapters. For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing, visit www.cambridge.org/mathematics

- 129 J. Berstel, D. Perrin, and C. Reutenauer Codes and Automata
- 130 T. G. Faticoni Modules over Endomorphism Rings
- 131 H. Morimoto Stochastic Control and Mathematical Modeling
- 132 G. Schmidt Relational Mathematics
- 133 P. Kornerup and D. W. Matula Finite Precision Number Systems and Arithmetic
- 134 Y. Crama and P. L. Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering
- 135 V. Berthé and M. Rigo (eds.) Combinatorics, Automata, and Number Theory
- 136 A. Kristály, V. D. Rădulescu, and C. Varga Variational Principles in Mathematical Physics, Geometry, and Economics
- 137 J. Berstel and C. Reutenauer Noncommutative Rational Series with Applications
- 138 B. Courcelle and J. Engelfriet Graph Structure and Monadic Second-Order Logic
- 139 M. Fiedler Matrices and Graphs in Geometry
- 140 N. Vakil Real Analysis through Modern Infinitesimals
- 141 R. B. Paris Hadamard Expansions and Hyperasymptotic Evaluation
- 142 Y. Crama and P. L. Hammer Boolean Functions
- 143 A. Arapostathis, V. S. Borkar, and M. K. Ghosh Ergodic Control of Diffusion Processes
- 144 N. Caspard, B. Leclerc, and B. Monjardet Finite Ordered Sets
- 145 D. Z. Arov and H. Dym Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations
- 146 G. Dassios Ellipsoidal Harmonics
- 147 L. W. Beineke and R. J. Wilson (eds.) with O. R. Oellermann Topics in Structural Graph Theory
- 148 L. Berlyand, A. G. Kolpakov, and A. Novikov Introduction to the Network Approximation Method for Materials Modeling
- 149 M. Baake and U. Grimm Aperiodic Order I: A Mathematical Invitation
- 150 J. Borwein et al. *Lattice Sums Then and Now*
- 151 R. Schneider Convex Bodies: The Brunn-Minkowski Theory (Second Edition)
- 152 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions (Second Edition)
- 153 D. Hofmann, G. J. Seal, and W. Tholen (eds.) Monoidal Topology
- 154 M. Cabrera García and Á. Rodríguez Palacios Non-Associative Normed Algebras I: The Vidav-Palmer and Gelfand-Naimark Theorems
- 155 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables (Second Edition)
- 156 L. W. Beineke and R. J. Wilson (eds.) with B. Toft *Topics in Chromatic Graph Theory*
- 157 T. Mora Solving Polynomial Equation Systems III: Algebraic Solving
- 158 T. Mora Solving Polynomial Equation Systems IV: Buchberger Theory and Beyond
- 159 V. Berthé and M. Rigo (eds.) Combinatorics, Words, and Symbolic Dynamics
- 160 B. Rubin Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis
- 161 M. Ghergu and S. D. Taliaferro Isolated Singularities in Partial Differential Inequalities
- 162 G. Molica Bisci, V. D. Radulescu, and R. Servadei Variational Methods for Nonlocal Fractional Problems
- 163 S. Wagon The Banach-Tarski Paradox (Second Edition)
- 164 K. Broughan Equivalents of the Riemann Hypothesis I: Arithmetic Equivalents
- 165 K. Broughan Equivalents of the Riemann Hypothesis II: Analytic Equivalents
- 166 M. Baake and U. Grimm (eds.) Aperiodic Order II: Crystallography and Almost Periodicity
- 167 M. Cabrera García and Á. Rodríguez Palacios Non-Associative Normed Algebras II: Representation Theory and the Zel'manov Approach
- 168 A. Yu. Khrennikov, S. V. Kozyrev, and W. A. Zúñiga-Galindo Ultrametric Pseudodifferential Equations and Applications
- 169 S. R. Finch Mathematical Constants II
- 170 J. Krajíček Proof Complexity
- 171 D. Bulacu, S. Caenepeel, F. Panaite and F. Van Oystaeyen *Quasi-Hopf Algebras*
- 172 P. McMullen Geometric Regular Polytopes
- 173 M. Aguiar and S. Mahajan Bimonoids for Hyperplane Arrangements
- 174 M. Barski and J. Zabczyk Mathematics of the Bond Market: A Lévy Processes Approach
- 175 T. R. Bielecki, J. Jakubowski, and M. Niewęgłowski Fundamentals of the Theory of Structured Dependence between Stochastic Processes
- 176 A. A. Borovkov Asymptotic Analysis of Random Walks: Light-Tailed Distributions
- 177 Y.-K. Chan Foundations of Constructive Probability Theory

Foundations of Constructive Probability Theory

YUEN-KWOK CHAN Citigroup

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108835435
DOI: 10.1017/9781108884013

© Yuen-Kwok Chan 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Chan, Yuen-Kwok, author.

Title: Foundations of constructive probability theory / Yuen-Kwok Chan.

Description: Cambridge, UK; New York, NY: Cambridge University Press, 2021.

Series: Encyclopedia of mathematics and its applications | Includes bibliographical references and index.

Identifiers: LCCN 2020046705 (print) | LCCN 2020046706 (ebook) | ISBN 9781108835435 (hardback) | ISBN 9781108884013 (epub)

Subjects: LCSH: Probabilities. | Stochastic processes. | Constructive mathematics. Classification: LCC QA273 .C483 2021 (print) | LCC QA273 (ebook) |

lassification: LCC QA273 .C483 2021 (print) | LCC QA273 (ebook) | DDC 519.2–dc23

LC record available at https://lccn.loc.gov/2020046705 LC ebook record available at https://lccn.loc.gov/2020046706

ISBN 978-1-108-83543-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to the memory of my father, Tak-Sun Chan

Contents

Acknowledgments			page x	
Nomenclature				
]	PART I INTRODUCTION AND PRELIMINARIES	1	
1	Intr	oduction	3	
2	Preliminaries			
	2.1	Natural Numbers	6	
	2.2	Calculation and Theorem	6	
	2.3	Proof by Contradiction	7	
	2.4	Recognizing Nonconstructive Theorems	7	
	2.5		7	
	2.6	Notations and Conventions	8	
3	Partition of Unity		17	
	3.1	Abundance of Compact Subsets	17	
	3.2		19	
	3.3	Partition of Unity	27	
	3.4	One-Point Compactification	34	
		PART II PROBABILITY THEORY	43	
4	Integration and Measure			
	4.1	Riemann–Stieljes Integral	45	
	4.2	Integration on a Locally Compact Metric Space	47	
	4.3	Integration Space: The Daniell Integral	51	
	4.4	Complete Extension of Integration	54	
	4.5	Integrable Set	65	
	4.6	Abundance of Integrable Sets	73	
	47	Uniform Integrability	88	

viii		Contents			
	4.8	Measurable Function and Measurable Set	94		
	4.9	Convergence of Measurable Functions	109		
	4.10	Product Integration and Fubini's Theorem	119		
5	Probability Space		138		
	5.1	Random Variable	138		
	5.2	Probability Distribution on Metric Space	151		
	5.3	Weak Convergence of Distributions	155		
	5.4	Probability Density Function and Distribution Function	164		
	5.5	Skorokhod Representation	169		
	5.6	Independence and Conditional Expectation	182		
	5.7	Normal Distribution	189		
	5.8	Characteristic Function	201		
	5.9	Central Limit Theorem	220		
		PART III STOCHASTIC PROCESS	225		
6	Rano	dom Field and Stochastic Process	227		
	6.1	Random Field and Finite Joint Distributions	227		
	6.2	Consistent Family of f.j.d.'s	231		
	6.3	Daniell-Kolmogorov Extension	241		
	6.4	Daniell-Kolmogorov-Skorokhod Extension	262		
7	Measurable Random Field		275		
	7.1	Measurable r.f. That Is Continuous in Probability	275		
	7.2	Measurable Gaussian Random Field	290		
8	Mar	tingale	299		
	8.1	Filtration and Stopping Time	299		
	8.2	Martingale	306		
	8.3	Convexity and Martingale Convergence	314		
	8.4	Strong Law of Large Numbers	323		
9	a.u. (Continuous Process	331		
	9.1	Extension from Dyadic Rational Parameters to Real			
		Parameters	333		
	9.2	C-Regular Family of f.j.d.'s and C-Regular Process	337		
	9.3	a.u. Hoelder Process	346		
	9.4	Brownian Motion	353		
	9.5	a.u. Continuous Gaussian Process	362		
10		Càdlàg Process	374		
	10.1	Càdlàg Function	375		
	10.2	Skorokhod Space $D[0,1]$ of Càdlàg Functions	384		
	10.3	a.u. Càdlàg Process	405		
	10.4	D-Regular Family of f.j.d.'s and D-Regular Process	409		

		Contents	ix
	10.5	Right-Limit Extension of <i>D</i> -Regular Process Is a.u. Càdlàg	413
	10.6	Continuity of the Right-Limit Extension	433
	10.7	Strong Right Continuity in Probability	443
	10.8	Sufficient Condition for an a.u. Càdlàg Martingale	458
	10.9	Sufficient Condition for Right-Hoelder Process	464
	10.10	a.u. Càdlàg Process on $[0, \infty)$	478
	10.11	First Exit Time for a.u. Càdlàg Process	488
11	Markov Process		493
	11.1	Markov Process and Strong Markov Process	494
	11.2	Transition Distribution	495
	11.3	Markov Semigroup	500
	11.4	Markov Transition f.j.d.'s	502
	11.5	Construction of a Markov Process from a Semigroup	510
	11.6	Continuity of Construction	524
	11.7	Feller Semigroup and Feller Process	536
	11.8	Feller Process Is Strongly Markov	548
	11.9	Abundance of First Exit Times	561
	11.10	First Exit Time for Brownian Motion	568
		APPENDICES	575
Appendix A		Change of Integration Variables	577
Appendix B		Taylor's Theorem	605
References			606
Index			609

Acknowledgments

Yuen-Kowk Chan is retired from Citigroup's Mortgage Analytics unit. All opinions expressed by the author are his own. The author is grateful to the late Professor E. Bishop for teaching him constructive mathematics, to the late Professors R. Getoor and R. Blumenthal for teaching him probability and for mentoring him, and to the late Professors R. Pyke and W. Birnbaum and the other statisticians in the Mathematics Department of the University of Washington, circa 1970s, for their moral support. The author is also thankful to the constructivists in the Mathematics Department of New Mexico State University, circa 1975, for hosting a sabbatical visit and for valuable discussions, especially to Professors F. Richman, D. Bridges, M. Mandelkern, W. Julian, and the late Professor R. Mines. Professors Melody Chan and Fritz Scholz provided incisive and valuable critiques of the introduction chapter of an early draft of this book. Professor Douglas Bridges gave many thoughtful comments of the draft. The author also wishes to thank Ms Jill Hobbs for her meticulous copyediting, and Ms Niranjana Harikrishnan for her aesthetically pleasing typography.

Nomenclature

≡	by definition equal to, 8
R	set of real numbers, 8
d _{ecld}	. Euclidean metric, 8
$a \lor b$	$\max(a,b),8$
$a \wedge b$	$\min(a,b),8$
a+	$\max(a,0),8$
a	$\min(a,0), 8$
$A \cup B$	union of sets A and B, 8
$A \cap B, AB$	intersection of sets A and B, 8
[<i>a</i>] ₁	an integer $[a]_1 \in (a, a + 2)$ for given $a \in R, 9$
<i>X</i> <i>A</i>	restriction of function X on a set to a subset A , 9
$X' \circ X, X'(X)$	composite of functions X' and X , 10
$(X \le a)$	$\{\omega \in domain(X) : X(\omega) \le a\}, 11$
	function of first variable, given value of second variable for a function X of two variables, 12
$T^*(Y) \equiv T(\cdot, Y)$	dual function of Y relative to a certain mapping T , 12
(S,d)	metric space, with metric d on set S , 12
$x \neq y$	d(x, y) > 0, where x, y are in some metric space, 13
J _c	metric complement of subset J in a metric space, 12
⊗	direct product of functions or sets, 14
$C_u(S,d), C_u(S)$	space of uniformly continuous real-valued functions on metric space (S,d) , 14
$C_{ub}(S,d), C_{ub}(S)$	subspace of $C_u(S,d)$ whose members are bounded, 14
$C_0(S,d), C_0(S)$	subspace of $C_u(S,d)$ whose members vanish at infinity, 15
C(S,d),C(S)	subspace of $C_u(S,d)$ whose members have bounded supports, 15
â	$1 \wedge d, 15$
O, o	bounds for real-valued function, 16
	mark for end of proof or end of definition, 16
ξ	binary approximation of a metric space, 20
$\ \xi\ $. modulus of local compactness corresponding to ξ , 20
	one-point compactification of (S,d) , 34
Δ	. point at infinity, 34
F B	
	.Riemann–Stieljes integral, 46
	. indicator of measurable set A , 67
A ^c	. measure-theoretic complement of measurable set A , 67
\$	ordering between certain real numbers and functions, 73

xii	Nomenclature
(G,λ)	profile system, 73
$(a,b) \ll \alpha$	the interval (a,b) is bounded in profile by α , 74
(Ω, L, E)	probability space, 138
$\int E(d\omega)X(\omega)$	<i>E</i> (<i>X</i>), 139
	the probability metric on r.v.'s, 145
	probability subspace generated by the family G of r.v.'s, 150
$\widehat{J}(S,d)$	set of distributions on complete metric space (S,d) , 151
⇒	weak convergence of distributions, or convergence in distributions of r.r.v.'s, 155
<i>PDist</i> ,ξ	metric on distributions on a locally compact metric space relative to binary approximation $\xi,156$
	P.D.F. induced on R by an r.r.v. X, 165
	Skorokhod representation of distributions on (S, d) , determined by ξ , 170
	subspace of conditionally integrable r.r.v.'s given the subspace L' , 184
	subspace of conditionally integrable r.r.v.'s, given $L(G)$, 184
	conditional expectation given an event A with positive probability, 184
	multivariate normal p.d.f., 192
	multivariate normal distribution, 193
	multivariate standard normal p.d.f., 193
- /	multivariate standard normal distribution, 193
	tail of univariate standard normal distribution, 193
	characteristic function of r.v. X with values in \mathbb{R}^n , 204
	characteristic function of distribution J on \mathbb{R}^n , 204
	Fourier transform of complex-valued function g on \mathbb{R}^n , 204
	Convolution of complex-valued functions f and g on \mathbb{R}^n , 204
	metric on characteristic functions on \mathbb{R}^n , 210
	set of r.f.'s with parameter set Q , state space (S,d) , and sample space (Ω,L,E) , 227
	. restriction of $X \in \widehat{R}(Q \times \Omega, S)$ to parameter subset $K \subset Q$, 227
	modulus of continuity in probability of $X K$, 228
	modulus of continuity a.u. of $X K$, 228
	modulus of a.u. continuity of $X K$, 228
	set of consistent families of f.j.d.'s with parameter set Q and state space S , 232
0.7	marginal metric for the set $\widehat{F}(Q,S)$ relative to the binary approximation $\xi,237$
$F_{Cp}(Q,S)$	subset of $\widehat{F}(Q,S)$ whose members are continuous in probability, 238
	metric on $\widehat{F}_{Cp}(Q,S)$ relative to dense subset Q_{∞} of parameter metric space $Q,240$
$\widehat{\rho}_{Prob,Q}$	probability metric on $\widehat{R}(Q \times \Omega, S)$, 265
$\rho_{Sup, Prob}$	metric on $F_{Cp}(Q, S)$, 277
$\widehat{R}_{Cp}(Q \times \Omega, S)$	subset of $\widehat{R}(Q \times \Omega, S)$ whose members are continuous in probability, 228
	subset of $\widehat{R}(Q \times \Omega, S)$ whose members are measurable, 276
	$\widehat{R}_{Meas}(Q \times \Omega, S) \cap \widehat{R}_{Cp}(Q \times \Omega, S), 276$
	filtration in probability space (Ω, L, E) , 300
	natural filtration of a process X , 300
	right-limit extension of filtration \mathcal{L} , 301
	probability subspace of observables at stopping time τ relative to filtration \mathcal{L} , 302
	the special convex function on <i>R</i> , 316
$Q_m, Q_m, Q_m, Q_\infty, Q_\infty$	certain subsets of dyadic rationals in $[0, \infty)$, 332
$(C[0,1], \rho_{\widehat{C}[0,1]})$	metric space of a.u. continuous processes on [0,1], 334

Nomenclature xiii Φ_{Lim} extension by limit of a process with parameter set Q_{∞} to parameter set [0, 1], 335 $\widehat{D}[0,1]....$ set of all a.u. càdlàg processes on [0,1], 406 δ_{aucl} modulus of a.u. càdlàg, 406 $\widehat{D}_{\delta(aucl),\delta(cp)}[0,1]$subset of $\widehat{D}[0,1]$ whose members have moduli δ_{Cp} , and δ_{aucl} , 406 $\rho_{\widehat{D}[0,1]}$ metric on $\widehat{D}[0,1]$, 409 $(\widehat{R}_{Dreg}(Q_{\infty} \times \Omega, S), \widehat{\rho}_{Prob, O(\infty)})$ metric space of *D*-regular processes, 410 Φ_{rLim} extension by right-limit of a process with parameter set Q_{∞} to parameter set [0, 1], 418 β_{auB} modulus of a.u. boundedness, 445 δ_{SRCp} modulus of strong right continuity in probability, 445 $\overline{\tau}_{f,a,N}(X)$ certain first exit times by the process X, 488 T.....a Markov semigroup, 500 δ_T a modulus of strong continuity of T, 500 α_T a modulus of smoothness of T, 500 $F_{r(1),\cdots,r(m)}^{*,T}$ a finite joint transition distribution generated by T, 502 $(\hat{\mathcal{T}}, \rho_{\mathcal{T}})$ metric space of Markov semigroups. 525 V...... a Feller semigroup, 538 $\delta_{\mathbf{V}}$ a modulus of strong continuity of \mathbf{V} , 538 α_V a modulus of smoothness of V, 538 $\kappa_{\mathbf{V}}$ a modulus of nonexplosion of \mathbf{V} , 538 $F_{r(1),\cdots,r(m)}^{*,\mathbf{V}}$ a finite joint transition distribution generated by \mathbf{V} , 539 $((S,d),(\Omega,L,E),\{U^{x,\mathbf{V}}:x\in S\})$ Feller process, 543 $((R^m, d^m), (\Omega, L, E), \{B^x : x \in R^m\})$ Brownian motion as a Feller process, 568

