The Science of Deep Learning

The Science of Deep Learning emerged from courses taught by the author that have provided thousands of students with training and experience for their academic studies, and prepared them for careers in deep learning, machine learning, and artificial intelligence in top companies in industry and academia.

The book begins by covering the foundations of deep learning, followed by key deep learning architectures. Subsequent parts on generative models and reinforcement learning may be used as part of a deep learning course or as part of a course on each topic. The book includes state-of-the-art topics such as Transformers, graph neural networks, variational autoencoders, and deep reinforcement learning, with a broad range of applications. The appendices provide equations for computing gradients in backpropagation and optimization, and best practices in scientific writing and reviewing.

The text presents an up-to-date guide to the field built upon clear visualizations using a unified notation and equations, lowering the barrier to entry for the reader. The accompanying website provides complementary code and hundreds of exercises with solutions.

Iddo Drori is a faculty member and associate professor at Boston University, a lecturer at MIT, and adjunct associate professor at Columbia University. He was a visiting associate professor at Cornell University in operations research and information engineering, and research scientist and adjunct professor at NYU Center for Data Science, Courant Institute, and NYU Tandon. He holds a PhD in computer science and was a postdoctoral research fellow at Stanford University in statistics. He also holds an MBA in organizational behavior and entrepreneurship and has a decade of industry research and leadership experience. His main research is in machine learning, AI, and computer vision, with 70 publications and over 5,100 citations, and he has taught over 35 courses in computer science. He has won multiple competitions in computer vision conferences and received multiple best paper awards in machine learning conferences.
The Science of Deep Learning

IDDO DRORI
Massachusetts Institute of Technology
Columbia University
Contents

Preface xv
Acknowledgments xvii
Abbreviations and Notation xix

Part I Foundations

1 Introduction

1.1 Deep Learning 3
1.2 Outline 4
1.2.1 Part I: Foundations: Backpropagation, Optimization, and Regularization 4
1.2.2 Part II: Architectures: CNNs, RNNs, GNNs, and Transformers 5
1.2.3 Part III: Generative Models: GANs, VAEs, and Normalizing Flows 6
1.2.4 Part IV: Reinforcement Learning .. 6
1.2.5 Part V: Applications .. 7
1.2.6 Appendices 7
1.3 Code 7
1.4 Exercises 8

2 Forward and Backpropagation

2.1 Introduction 9
2.2 Fully Connected Neural Network 9
2.3 Forward Propagation 11
2.3.1 Algorithm 12
2.3.2 Example 12
2.3.3 Logistic Regression 14
2.4 Non-linear Activation Functions 16
2.4.1 Sigmoid 16
2.4.2 Hyperbolic Tangent 16
2.4.3 Rectified Linear Unit 17
2.4.4 Swish 18
Contents

2.4.5 Softmax 18
2.5 Loss Functions 19
2.6 Backpropagation 21
2.7 Differentiable Programming 22
2.8 Computation Graph 22
 2.8.1 Example 22
 2.8.2 Logistic Regression 24
 2.8.3 Forward and Backpropagation 25
2.9 Derivative of Non-linear Activation Functions 26
2.10 Backpropagation Algorithm 28
 2.10.1 Example 29
2.11 Chain Rule for Differentiation 30
 2.11.1 Two Functions in One Dimension 30
 2.11.2 Three Functions in One Dimension 31
 2.11.3 Two Functions in Higher Dimensions ... 31
2.12 Gradient of Loss Function 32
2.13 Gradient Descent 32
2.14 Initialization and Normalization 33
2.15 Software Libraries and Platforms 33
2.16 Summary 33

3 Optimization 35
 3.1 Introduction 35
 3.2 Overview 35
 3.2.1 Optimization Problem Classes 35
 3.2.2 Optimization Solution Methods 37
 3.2.3 Derivatives and Gradients 37
 3.2.4 Gradient Computation 38
 3.3 First-Order Methods 39
 3.3.1 Gradient Descent 39
 3.3.2 Step Size 41
 3.3.3 Mini-Batch Gradient Descent 44
 3.3.4 Stochastic Gradient Descent 44
 3.3.5 Adaptive Gradient Descent 45
 3.3.6 Momentum 46
 3.3.7 Adagrad 47
 3.3.8 Adam: Adaptive Moment Estimation 47
 3.3.9 Hypergradient Descent 48
 3.4 Second-Order Methods 49
 3.4.1 Newton’s Method 49
 3.4.2 Second-Order Taylor Approximation 51
 3.4.3 Quasi-Newton Methods 53
 3.5 Evolution Strategies 54
 3.6 Summary 55
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Regularization</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Generalization</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Overfitting</td>
<td>58</td>
</tr>
<tr>
<td>4.4</td>
<td>Cross Validation</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>Bias and Variance</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>Vector Norms</td>
<td>59</td>
</tr>
<tr>
<td>4.7</td>
<td>Ridge Regression and Lasso</td>
<td>60</td>
</tr>
<tr>
<td>4.8</td>
<td>Regularized Loss Functions</td>
<td>61</td>
</tr>
<tr>
<td>4.9</td>
<td>Dropout Regularization</td>
<td>62</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Random Least Squares with Dropout</td>
<td>63</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Least Squares with Noise Input Distortion</td>
<td>64</td>
</tr>
<tr>
<td>4.10</td>
<td>Data Augmentation</td>
<td>64</td>
</tr>
<tr>
<td>4.11</td>
<td>Batch Normalization</td>
<td>65</td>
</tr>
<tr>
<td>4.12</td>
<td>Summary</td>
<td>65</td>
</tr>
</tbody>
</table>

Part II Architectures

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Convolutional Neural Networks</td>
<td>69</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Representations Sharing Weights</td>
<td>69</td>
</tr>
<tr>
<td>5.2</td>
<td>Convolution</td>
<td>70</td>
</tr>
<tr>
<td>5.2.1</td>
<td>One-Dimensional Convolution</td>
<td>70</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Matrix Multiplication</td>
<td>71</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Two-Dimensional Convolution</td>
<td>73</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Separable Filters</td>
<td>76</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Properties</td>
<td>76</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Composition</td>
<td>77</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Three-Dimensional Convolution</td>
<td>77</td>
</tr>
<tr>
<td>5.3</td>
<td>Layers</td>
<td>78</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Convolution</td>
<td>78</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Pooling</td>
<td>78</td>
</tr>
<tr>
<td>5.4</td>
<td>Example</td>
<td>79</td>
</tr>
<tr>
<td>5.5</td>
<td>Architectures</td>
<td>80</td>
</tr>
<tr>
<td>5.6</td>
<td>Applications</td>
<td>86</td>
</tr>
<tr>
<td>5.7</td>
<td>Summary</td>
<td>89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Sequence Models</td>
<td>91</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>91</td>
</tr>
<tr>
<td>6.2</td>
<td>Natural Language Models</td>
<td>91</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Bag of Words</td>
<td>91</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Feature Vector</td>
<td>92</td>
</tr>
<tr>
<td>6.2.3</td>
<td>N-grams</td>
<td>92</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.4</td>
<td>Markov Model</td>
<td>92</td>
</tr>
<tr>
<td>6.2.5</td>
<td>State Machine</td>
<td>92</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Recurrent Neural Network</td>
<td>93</td>
</tr>
<tr>
<td>6.3</td>
<td>Recurrent Neural Network</td>
<td>93</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Architectures</td>
<td>94</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Loss Function</td>
<td>95</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Deep RNN</td>
<td>97</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Bidirectional RNN</td>
<td>98</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Backpropagation Through Time</td>
<td>99</td>
</tr>
<tr>
<td>6.4</td>
<td>Gated Recurrent Unit</td>
<td>102</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Update Gate</td>
<td>104</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Candidate Activation</td>
<td>105</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Reset Gate</td>
<td>105</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Function</td>
<td>107</td>
</tr>
<tr>
<td>6.5</td>
<td>Long Short-Term Memory</td>
<td>108</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Forget Gate</td>
<td>109</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Input Gate</td>
<td>110</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Memory Cell</td>
<td>112</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Candidate Memory</td>
<td>113</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Output Gate</td>
<td>113</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Peephole Connections</td>
<td>115</td>
</tr>
<tr>
<td>6.5.7</td>
<td>GRU vs. LSTM</td>
<td>115</td>
</tr>
<tr>
<td>6.6</td>
<td>Sequence to Sequence</td>
<td>117</td>
</tr>
<tr>
<td>6.7</td>
<td>Attention</td>
<td>118</td>
</tr>
<tr>
<td>6.8</td>
<td>Embeddings</td>
<td>121</td>
</tr>
<tr>
<td>6.9</td>
<td>Introduction to Transformers</td>
<td>122</td>
</tr>
<tr>
<td>6.10</td>
<td>Summary</td>
<td>123</td>
</tr>
<tr>
<td>7</td>
<td>Graph Neural Networks</td>
<td>124</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>124</td>
</tr>
<tr>
<td>7.2</td>
<td>Definitions</td>
<td>126</td>
</tr>
<tr>
<td>7.3</td>
<td>Embeddings</td>
<td>130</td>
</tr>
<tr>
<td>7.4</td>
<td>Node Similarity</td>
<td>132</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Adjacency-based Similarity</td>
<td>132</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Multi-hop Similarity</td>
<td>132</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Overlap Similarity</td>
<td>132</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Random Walk Embedding</td>
<td>133</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Graph Neural Network Properties</td>
<td>135</td>
</tr>
<tr>
<td>7.5</td>
<td>Neighborhood Aggregation in Graph Neural Networks</td>
<td>136</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Supervised Node Classification Using a GNN</td>
<td>138</td>
</tr>
<tr>
<td>7.6</td>
<td>Graph Neural Network Variants</td>
<td>138</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Graph Convolution Network</td>
<td>138</td>
</tr>
<tr>
<td>7.6.2</td>
<td>GraphSAGE</td>
<td>139</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Gated Graph Neural Networks</td>
<td>139</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.4</td>
<td>Graph Attention Networks</td>
<td>140</td>
</tr>
<tr>
<td>7.6.5</td>
<td>Message-Passing Networks</td>
<td>140</td>
</tr>
<tr>
<td>7.7</td>
<td>Applications</td>
<td>140</td>
</tr>
<tr>
<td>7.8</td>
<td>Software Libraries, Benchmarks, and Visualization</td>
<td>141</td>
</tr>
<tr>
<td>7.9</td>
<td>Summary</td>
<td>141</td>
</tr>
<tr>
<td>8</td>
<td>Transformers</td>
<td>142</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>142</td>
</tr>
<tr>
<td>8.2</td>
<td>General-Purpose Transformer-Based Architectures</td>
<td>143</td>
</tr>
<tr>
<td>8.2.1</td>
<td>BERT</td>
<td>143</td>
</tr>
<tr>
<td>8.3</td>
<td>Self-Attention</td>
<td>143</td>
</tr>
<tr>
<td>8.4</td>
<td>Multi-head Attention</td>
<td>144</td>
</tr>
<tr>
<td>8.5</td>
<td>Transformer</td>
<td>145</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Positional Encoding</td>
<td>145</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Encoder</td>
<td>145</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Decoder</td>
<td>146</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Pre-training and Fine-tuning</td>
<td>146</td>
</tr>
<tr>
<td>8.6</td>
<td>Transformer Models</td>
<td>146</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Autoencoding Transformers</td>
<td>146</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Auto-regressive Transformers</td>
<td>147</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Sequence-to-Sequence Transformers</td>
<td>147</td>
</tr>
<tr>
<td>8.6.4</td>
<td>GPT-3</td>
<td>148</td>
</tr>
<tr>
<td>8.7</td>
<td>Vision Transformers</td>
<td>148</td>
</tr>
<tr>
<td>8.8</td>
<td>Multi-modal Transformers</td>
<td>149</td>
</tr>
<tr>
<td>8.9</td>
<td>Text and Code Transformers</td>
<td>149</td>
</tr>
<tr>
<td>8.10</td>
<td>Summary</td>
<td>150</td>
</tr>
</tbody>
</table>

Part III Generative Models

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Generative Adversarial Networks</td>
<td>153</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Progress</td>
<td>153</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Game Theory</td>
<td>154</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Co-evolution</td>
<td>155</td>
</tr>
<tr>
<td>9.2</td>
<td>Minimax Optimization</td>
<td>155</td>
</tr>
<tr>
<td>9.3</td>
<td>Divergence between Distributions</td>
<td>157</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Least Squares GAN</td>
<td>158</td>
</tr>
<tr>
<td>9.3.2</td>
<td>f-GAN</td>
<td>158</td>
</tr>
<tr>
<td>9.4</td>
<td>Optimal Objective Value</td>
<td>158</td>
</tr>
<tr>
<td>9.5</td>
<td>Gradient Descent Ascent</td>
<td>158</td>
</tr>
<tr>
<td>9.6</td>
<td>Optimistic Gradient Descent Ascent</td>
<td>159</td>
</tr>
<tr>
<td>9.7</td>
<td>GAN Training</td>
<td>160</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Discriminator Training</td>
<td>160</td>
</tr>
</tbody>
</table>
Contents

9.7.2 Generator Training .. 160
9.7.3 Alternating Discriminator–Generator Training 161
9.8 GAN Losses .. 162
 9.8.1 Wasserstein GAN 162
 9.8.2 Unrolled GAN 163
9.9 GAN Architectures ... 164
 9.9.1 Progressive GAN 164
 9.9.2 Deep Convolutional GAN 164
 9.9.3 Semi-Supervised GAN 164
 9.9.4 Conditional GAN 164
 9.9.5 Image-to-Image Translation 165
 9.9.6 Cycle-Consistent GAN 165
 9.9.7 Registration GAN 167
 9.9.8 Self-Attention GAN and BigGAN 167
 9.9.9 Composition and Control with GANs 167
 9.9.10 Instance Conditioned GAN 168
9.10 Evaluation .. 168
 9.10.1 Inception Score 168
 9.10.2 Frechet Inception Distance 169
9.11 Applications .. 169
 9.11.1 Super Resolution and Restoration 169
 9.11.2 Style Synthesis 169
 9.11.3 Image Completion 169
 9.11.4 De-raining ... 170
 9.11.5 Map Synthesis 170
 9.11.6 Pose Synthesis 170
 9.11.7 Face Editing ... 170
 9.11.8 Training Data Generation 170
 9.11.9 Text-to-Image Synthesis 170
 9.11.10 Medical Imaging 171
 9.11.11 Video Synthesis 171
 9.11.12 Motion Retargeting 171
 9.11.13 3D Synthesis 171
 9.11.14 Graph Synthesis 172
 9.11.15 Autonomous Vehicles 172
 9.11.16 Text-to-Speech Synthesis 172
 9.11.17 Voice Conversion 172
 9.11.18 Music Synthesis 172
 9.11.19 Protein Design 172
 9.11.20 Natural Language Synthesis 173
 9.11.21 Cryptography 173
9.12 Software Libraries, Benchmarks, and Visualization .. 173
9.13 Summary ... 173
Contents

10 Variational Autoencoders 174

10.1 Introduction 174
10.2 Variational Inference 174
10.2.1 Reverse KL 176
10.2.2 Score Gradient 178
10.2.3 Reparameterization Gradient 179
10.2.4 Forward KL 180
10.3 Variational Autoencoder 181
10.3.1 Autoencoder 181
10.3.2 Variational Autoencoder 182
10.4 Generative Flows 184
10.5 Denoising Diffusion Probabilistic Model 186
10.5.1 Forward Noising Process 186
10.5.2 Reverse Generation by Sampling 186
10.6 Geometric Variational Inference 187
10.6.1 Moser Flow 188
10.6.2 Riemannian Score-Based Generative Models 188
10.7 Software Libraries 189
10.8 Summary 189

Part IV Reinforcement Learning

11 Reinforcement Learning 193

11.1 Introduction 193
11.2 Multi-Armed Bandit 193
11.2.1 Greedy Approach 194
11.2.2 ϵ-greedy Approach 194
11.2.3 Upper Confidence Bound 196
11.3 State Machines 196
11.4 Markov Processes 196
11.5 Markov Decision Processes 199
11.5.1 State of Environment and Agent 200
11.6 Definitions 202
11.6.1 Policy 202
11.6.2 State Action Diagram 203
11.6.3 State Value Function 204
11.6.4 Action Value Function 207
11.6.5 Reward 209
11.6.6 Model 210
11.6.7 Agent Types 210
11.6.8 Problem Types 211
11.6.9 Agent Representation of State 211
11.6.10 Bellman Expectation Equation for State Value Function 212
Contents

11.6.11 Bellman Expectation Equation for Action Value Function 214
11.7 Optimal Policy .. 214
 11.7.1 Optimal Value Function 215
 11.7.2 Bellman Optimality Equation for V_* 215
 11.7.3 Bellman Optimality Equation for Q_* 216
11.8 Planning by Dynamic Programming with a Known MDP 218
 11.8.1 Iterative Policy Evaluation 218
 11.8.2 Policy Iteration 218
 11.8.3 Infinite Horizon Value Iteration 219
11.9 Reinforcement Learning 219
 11.9.1 Model-Based Reinforcement Learning 221
 11.9.2 Policy Search 222
 11.9.3 Monte Carlo Sampling 222
 11.9.4 Temporal Difference Sampling 222
 11.9.5 Q-Learning 224
 11.9.6 Sarsa ... 226
 11.9.7 On-Policy vs. Off-Policy Methods 227
 11.9.8 Sarsa(λ) 227
11.10 Maximum Entropy Reinforcement Learning 227
11.11 Summary ... 228

12 Deep Reinforcement Learning 229
 12.1 Introduction .. 229
 12.2 Function Approximation 230
 12.2.1 State Value Function Approximation 230
 12.2.2 Action Value Function Approximation 231
 12.3 Value-Based Methods 232
 12.3.1 Experience Replay 232
 12.3.2 Neural Fitted Q-Iteration 233
 12.3.3 Deep Q-Network 233
 12.3.4 Target Network 234
 12.3.5 Algorithm 234
 12.3.6 Prioritized Replay 234
 12.3.7 Double DQN 235
 12.3.8 Dueling Networks 235
 12.4 Policy-Based Methods 236
 12.4.1 Policy Gradient 237
 12.4.2 REINFORCE 238
 12.4.3 Subtracting a Baseline 238
 12.5 Actor–Critic Methods 239
 12.5.1 Advantage Actor–Critic 240
 12.5.2 Asynchronous Advantage Actor–Critic 240
 12.5.3 Importance Sampling 241
 12.5.4 Surrogate Loss 241
Contents

12.5.5 Natural Policy Gradient .. 242
12.5.6 Trust Region Policy Optimization 243
12.5.7 Proximal Policy Optimization 244
12.5.8 Deep Deterministic Policy Gradient 244

12.6 Model-Based Reinforcement Learning 245
12.6.1 Monte Carlo Tree Search 245
12.6.2 Expert Iteration and AlphaZero 246
12.6.3 World Models .. 247

12.7 Imitation Learning .. 248

12.8 Exploration .. 249
12.8.1 Sparse Rewards .. 249

12.9 Summary ... 249

Part V Applications

13 Applications 253

13.1 Introduction .. 253

13.2 Autonomous Vehicles ... 253

13.3 Climate Change and Climate Monitoring 255
13.3.1 Predicting Ocean Biogeochemistry 255
13.3.2 Predicting Atlantic Multidecadal Variability 258
13.3.3 Predicting Wildfire Growth 261

13.4 Computer Vision ... 262
13.4.1 Kinship Verification 262
13.4.2 Image-to-3D .. 263
13.4.3 Image2LEGO® .. 264
13.4.4 Imaging through Scattering Media 265
13.4.5 Contrastive Language-Image Pre-training 269

13.5 Speech and Audio Processing 269
13.5.1 Audio Reverb Impulse Response Synthesis 269
13.5.2 Voice Swapping .. 270
13.5.3 Explainable Musical Phrase Completion 271

13.6 Natural Language Processing 273
13.6.1 Quantifying and Alleviating Distribution Shifts in Founda-
 tion Models on Review Classification 273

13.7 Automated Machine Learning 275

13.8 Education ... 278
13.8.1 Learning-to-Learn STEM Courses 278

13.9 Proteomics .. 280
13.9.1 Protein Structure Prediction 280
13.9.2 Protein Docking .. 284

13.10 Combinatorial Optimization 285
13.10.1 Problems over Graphs 288
13.10.2 Learning Graph Algorithms as Single-Player Games . 289
13.11 Physics ... 289
13.11.1 Pedestrian Wind Estimation in Urban Environments . 289
13.11.2 Fusion Plasma 290
13.12 Summary ... 291

Appendix A Matrix Calculus 293
A.1 Gradient Computations for Backpropagation 293
A.1.1 Scalar by Vector 293
A.1.2 Scalar by Matrix 293
A.1.3 Vector by Vector 294
A.1.4 Matrix by Scalar 294
A.2 Gradient Computations for Optimization 294
A.2.1 Dot Product by Vector 294
A.2.2 Quadratic Form by Vector 295

Appendix B Scientific Writing and Reviewing Best Practices 296
B.1 Writing Best Practices 296
B.1.1 Introduction 296
B.1.2 Methods ... 296
B.1.3 Figures and Tables 297
B.1.4 Results .. 297
B.1.5 Abbreviations and Notation 297
B.2 Reviewing Best Practices 297
B.2.1 Ranking .. 298
B.2.2 Rebuttal .. 298

References 299
Index 335
Preface

This book provides comprehensive and clear coverage of deep learning, which has transformed the field of artificial intelligence. The book is distinctive in that it uses a unified notation, high-quality illustrated figures and the most up-to-date material in the field, and is accompanied by hundreds of code samples, exercises, and solutions on each topic, automatically generated by program synthesis. *The Science of Deep Learning* emerged from courses taught by the author in the past five years that have provided thousands of students with training and experience for their academic studies, and prepared them for careers in deep learning, machine learning, and artificial intelligence in leading companies in industry and academia. The motivation for the book is to provide a guide to the field built upon clear visualizations using a unified notation and equations. The content is self-contained, using a unified language so that students, teachers, and researchers in academia and industry can use the book without having to overcome the barriers to entry of the specific language and notation of each topic. Introductory topics are represented using both basic linear algebra and graphs simultaneously, along with the corresponding algorithms.

Coverage

The material is presented in five main parts:

1. Part I, on the foundations of deep learning, includes Chapters 1–4, which covers core deep learning material on forward and backpropagation, optimization, and regularization.
2. Part II, on deep learning architectures, includes Chapters 5–8. This covers key architectures including convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTMs), gated recurrent units (GRUs), graph neural networks (GNNs), and Transformers.
3. Part III, on generative models, comprises Chapters 9 and 10, which cover generative adversarial networks (GANs) and variational autoencoders (VAEs).
4. Part IV addresses reinforcement learning and deep reinforcement learning (Chapters 11 and 12).
5. Part V, on applications (Chapter 13), covers a broad range of deep learning...
applications, which are also distributed among the chapters by topic and relevance.

6. Appendices provide equations for computing gradients in backpropagation and optimization, and best practices in scientific writing and reviewing.

Contribution

The book contributes to the literature in the field in that it uses rigorous math with a unified notation. In addition, over the past five years, during the course of instruction, advanced topics have been simplified to become part of the core, while bringing in new topics in the field as advanced topics. The key advantages of this book are that it is up-to-date, with the latest advances in the field including unique content; the math is rigorous, using a unified notation; and the book presents comprehensive algorithms and uses high-quality figures.

Audience and Prerequisite Knowledge

The book is intended for students and researchers in academia and industry, as well as lecturers in academia. The book is primarily intended for computer science undergraduate and graduate students, as well as advanced PhD students. This book has been used for teaching students mainly in computer science, electrical engineering, data science, statistics, and operations research. The required background is linear algebra and calculus. Optional background is machine learning and programming experience. The book is also applicable for a wide audience of students pursuing degrees in STEM fields with the required background. The book is useful for researchers in academia and industry, as well as data scientists and algorithm developers of artificial intelligence. Finally, the book may be used by lecturers in academia for teaching a course on deep learning, and chapters may be used in teaching topics in courses on machine learning, data science, optimization, and reinforcement learning at the undergraduate and graduate levels.

Usage

The first four parts of the book have been used as a textbook in courses on deep learning. The third part, on generative models, may be used as part of a course on unsupervised learning. The fourth part may be used as part of a course on reinforcement learning or deep reinforcement learning. Appendix A is useful for computing the gradients in backpropagation and optimization. Appendix B may be used in project-based courses for providing best practices in scientific writing and reviewing.
Acknowledgments

I developed the material for this book over the past five years while teaching a dozen deep learning classes. The book is now used as the new textbook in deep learning at Columbia University. I would like to thank Columbia University students that read each chapter before class and reported errata that I fixed and improved the book, MIT students and colleagues for reading the book and providing feedback, Leslie Goodman and Gary Daniel Smith for copy editing, Michal Solel Elnekave and Nikhil Singh, who were helpful in producing high-quality figures in Illustrator from sketches, and Maggie Jeffers and Lauren Cowles, my editors who encouraged me to see the book to completion. I wish to thank numerous colleagues, particularly Kyunghyun Cho and Claudio Silva of NYU, Nakul Verma and Itsik Pe’er of Columbia University, Tonio Buonassisi and Gilbert Strang of MIT, Dov Te’eni of Tel Aviv University, and Madeleine Udell and David Williamson of Cornell University. Finally, I’d like to thank my family, Adi, Danielle, Yael, Sharon, and Gilly, my sister Dr. Tali Drori Snir, mom Nili and special thanks to my dad, Prof. Israel Drori, who has published over a dozen books and gets to read my first one.
Abbreviations

- **A2C**: advantage actor–critic
- **A3C**: asynchronous advantage actor–critic
- **AMV**: Atlantic Multidecadal Variability
- **AVI**: amortized variational inference
- **BBVI**: black-box variational inference
- **BCE**: binary cross entropy
- **BERT**: bidirectional encoder representations from Transformers
- **BFGS**: Broyden–Fletcher–Goldfarb–Shanno (correction)
- **CFD**: computational fluid dynamics
- **CGAN**: conditional GAN
- **CLIP**: contrastive language-image pre-training
- **CNN**: convolutional neural network
- **DAG**: directed acyclic graph
- **DCGAN**: deep convolutional generative adversarial network
- **DDPG**: deep deterministic policy gradient
- **DDPM**: denoising diffusion probabilistic model
- **DFP**: Davidon–Fletcher–Powell (correction)
- **DMD**: digital micromirror device
- **DQN**: deep Q-network
- **ELBO**: evidence lower bound
- **EMD**: Earth mover’s distance
- **ENSO**: El Niño-Southern Oscillation
- **ESM**: Earth system model
- **FID**: Frechet inception distance
- **FKL**: forward KL
- **GAE**: generalized advantage estimation
- **GAN**: generative adversarial network
- **GAT**: graph attention network
- **GCN**: graph convolutional network
- **GDA**: Gradient descent ascent
- **GNN**: graph neural network
- **GPT-3**: generative pre-trained Transformer 3
- **GRU**: gated recurrent unit
- **IID**: independent and identically distributed
Abbreviations and Notation

IR impulse response
IS inception score
JS Jensen–Shannon (divergence)
KL Kullback–Leibler
LSTM long short-term memory
MAE mean absolute error
MC Monte Carlo
MCMC Markov chain Monte Carlo
MCTS Monte Carlo tree search
MDP Markov decision process
MFVI mean-field variational inference
MST minimum spanning tree
NAS neural architecture search
NPCC negative Pearson correlation coefficient
NPG natural policy gradient
OGDA optimistic gradient descent ascent
PCA principle component analysis
PPO proximal policy optimization
ReLU rectified linear unit function
RFIW Recognizing Families in the Wild
RKL reverse KL
RNN recurrent neural network
seq2seq sequence-to-sequence (models)
SGAN semi-supervised GAN
SGD stochastic gradient descent
SLM spatial light modulator
SSP single-source shortest paths
SSS sea surface salinity
SST sea-surface temperatures
TD temporal difference
TRPO trust region policy optimization
TSP traveling salesman problem
UCB upper confidence bound
VAE variational autoencoder
VI variational inference
VQ-VAE vector quantized variational autoencoder
VRN Volumetric Regression Network
VRP vehicle routing problem
WGAN Wasserstein GAN
Abbreviations and Notation

Notation

General

\(\mathbb{E} \)
expectation

\(\mathbb{R} \)
real numbers

\(I \)
identity matrix

\(X^T \)
matrix transpose

\(\|x\|_p \)
\(\ell_p \) norm of vector \(x \)

\(\cap \)
intersection

\(\cup \)
union

\(\| \)
concatenation of vectors

\(\mathcal{N}(\mu, \sigma) \)
Gaussian distribution with mean \(\mu \) and standard deviation \(\sigma \)

\(\nabla_x y \)
gradient of \(y \) with respect to \(x \)

Neural Networks

\(\alpha \)
learning rate

\(\theta \)
learning parameter

\(\ell \)
network layer index

\(W^\ell \)
weight matrix of layer

\(z^\ell \)
pre-activation vector of layer

\(Z^\ell \)
pre-activation matrix of layer

\(a^\ell \)
activation vector of layer

\(A^\ell \)
activation matrix of layer

\(f^\ell \)
non-linear activation function of layer

\(\sigma \)
sigmoid function

\(\mathcal{L} \)
loss function

\(\mathcal{R} \)
regularization function

Convolutional Neural Networks

\(f * g \)
convolution of functions \(f \) and \(g \)

Sequence Models

\(x_t \)
input vector at time \(t \)

\(h_t \)
hidden vector at time \(t \)

\(y_t \)
output vector at time \(t \)

\(U \)
weight matrix applied to input vector shared across time

\(V \)
weight matrix applied to hidden vector shared across time

\(W \)
weight matrix applied to previous hidden vector shared across time
Abbreviations and Notation

Graph Neural Networks
- G: graph
- V: graph nodes
- E: graph edges
- $N(i)$: neighbors of node i
- A: graph adjacency matrix
- D: graph diagonal degree matrix
- L: graph Laplacian matrix
- L_{sym}: symmetric normalized Laplacian matrix
- L_{rw}: random walk normalized Laplacian matrix
- h^ℓ: embedding vector of layer ℓ

Generative Models
- D: GAN discriminator
- G: GAN generator
- D_{KL}: Kullback–Leibler divergence
- D_{JS}: Jenson–Shannon divergence

Reinforcement Learning
- s: state
- S: set of states
- a: action
- A: set of actions
- $T(s,a,s')$: transition function from state s and action a to next state s'
- r: reward
- $R(s,a)$: reward for state s and action a
- γ: reward discount factor
- g_t: return at time step t
- π: policy
- $\pi(a|s)$: probability of taking action a in state s under policy π
- h: horizon
- $V^h_\pi(s)$: state value function with respect to policy π with horizon h of state s
- $Q^h_\pi(s,a)$: action value function with respect to policy π with horizon h of state s and action a
- π^*: optimal policy
- $V_*(s)$: state value function with respect to optimal policy π^* for state s
- $Q_*(s,a)$: action value function with respect to optimal policy π^* for state s and action a