Contents

Preface				
Preface to the First Edition				
Principal Nomenclature				
	_			
1	Introduction			
	1.1	The fact of turbulent flow	1	
	1.2	Broad options in modelling	2	
	1.3	A preview of the mean-strain generation processes in the		
		stress-transport equation	5	
	1.4	Some consequences of the no-slip boundary condition at a		
		wall	9	
	1.5	Sequencing of the material	11	
2	2 The exact equations			
	2.1	The underpinning conservation equations	13	
	2.2	The Reynolds equations	15	
	2.3	The second-moment equations	22	
3 Characterization of stress and flux dynamics: elements required				
C	for modelling			
	3 1	Introduction	33	
	3.2	Energy flow processes in turbulence	33	
	3.3	The spectral character of turbulence	38	
	3.4	The ε -equation	43	
	3.5	Transport equation for the mean-square scalar variance,	_	
		$\overline{\theta^2}$	46	
	3.6	Transport equation for dissipation of scalar variance, ε_{AA}	48	
	3.7	Turbulence anisotropy, invariants and realizability	50	

v

CAMBRIDGE

vi		Contents	
4	Ann	roaches to closure	59
-	4.1	General remarks and basic guidelines	59
	4.2	Pressure interactions, Φ_{ii} and $\Phi_{\theta i}$: the Poisson equation	62
	4.3	The basic second-moment closure for high- Re_t flow	
		regions	66
	4.4	Pressure-strain models from tensor expansion	84
	4.5	Turbulence affected by force fields	111
	4.6	Modelling the triple moments	131
5	Mod	elling the scale-determining equations	140
	5.1	The energy dissipation rate, ε	140
	5.2	Other scale-determining equations	152
	5.3	Multi-scale approaches	157
	5.4	Determining $\varepsilon_{\theta\theta}$, the dissipation rate of θ^2	163
6	Mod	elling in the immediate wall vicinity and at low Re _t	167
	6.1	The nature of viscous and wall effects: options for	
		modelling	167
	6.2	The structure of the near-wall sublayer	170
	6.3	Wall integration (WIN) schemes	185
	6.4	Illustration of the performance of two near-wall models	208
	6.5	Elliptic relaxation concept	222
7	Simp	olified schemes	233
	7.1	Rationale and organization	233
	7.2	Reduced transport-equation models	234
	7.3	Algebraic truncations of the second-moment equations	239
	7.4	Linear eddy-viscosity models	261
8	Wall	functions	293
	8.1	Early proposals	293
	8.2	Towards a generalization of the wall-function concept:	
		preliminaries	299
	8.3	Analytical wall functions (AWFs)	302
	8.4	A simplified AWF (SAWF)	312
	8.5	Blended wall treatment (BWT)	319
	8.6	Numerical wall functions (NWFs)	327
9	RAN	S modelling of unsteady flows (URANS)	332
	9.1	Feasibility of URANS for inherently unsteady turbulent	
		flows	332

	Contents	vii
9.2	Mathematical formalism	334
9.3	The role of the URANS model: EVM versus RSM in flow	
	over a cylinder	337
9.4	URANS modelling of swirling flows and vortex	
	precessing	348
9.5	Capabilities of EVMs and ASM/AFMs within URANS	353
10 Hyb	rid RANS-LES (HRL)	371
Co-a	uthored with Alistair J. Revell	
10.1	Introduction and overview	371
10.2	Large-eddy simulation	381
10.3	The classification of hybrid methods	396
10.4	Bulk zonal models and embedded LES	402
10.5	Wall-modelled LES	406
10.6	Seamless methods	426
10.7	Hybrid RANS-LES models: summary and outlook	459
Roforonc	25	464
Index		
παελ		490