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Introduction

1.1 The fact of turbulent flow

Man has evolved within a world where air and water are, by far, the most common

fluids encountered. The scales of the environment around him and of the machines

and structures his ingenuity has created mean that, given their relatively low kin-

ematic viscosities, the relevant global Reynolds number, Re, associated with the

motion of both fluids is, in most cases, sufficiently high that the resultant flow is of

the continually time-varying, spatially irregular kind we call turbulent.

If, however, our Reynolds number is chosen not by the overall physical dimen-

sion of the body of interest – an aircraft wing, say – and the fluid velocity past

it but by the smallest distance over which the velocity found within a turbulent

eddy changes appreciably and the time over which such a velocity change will

occur, its value then turns out to be of order unity. Indeed, one might observe that

if this last Reynolds number, traditionally called the micro-scale Reynolds number,

Reη, were significantly greater than unity, the rate at which the turbulent kinetic

energy is destroyed by viscous dissipation could not balance the overall rate at

which turbulence ‘captures’ kinetic energy from the mean flow.

This immutable fact of turbulence life lies at the heart of the problem of com-

puting turbulent flows. Any complete numerical solution of the Navier–Stokes

equations must resolve accurately these fine-scale motions as well as the large-

scale overall flow picture in which we are interested. Because of the range of scales

to be resolved, from the fine-scale dissipative motions to the complete flow field,

it is only feasible at present to carry out such a direct numerical simulation (DNS)

of turbulent flow for relatively simple shear flows for overall Reynolds numbers

typically of order 105 and then only with ‘supercomputer’ scales of hardware.

If one is, thus, to embark on the computation of practically interesting turbulent

flows reasonably cheaply (recognizing that in most cases one needs to make tens

or even hundreds of computations of the same geometric configuration to obtain
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2 Introduction

a sufficiently full picture), some form of modelling is essential to compensate for

being unable to resolve directly all the turbulence scales as well as the mean flow.

1.2 Broad options in modelling

Two broad strategies for modelling are commonly employed.

● Large-eddy simulation (LES), where one resolves as large a proportion of the

turbulent fluctuations as one judges necessary (or can afford) and applies a model

– a sub-grid-scale (sgs) model – to account for the effects of those motions of

a finer scale than can be resolved with the adopted mesh. The principal needs,

so far as the dynamic field is concerned, are to account for momentum transfer

by the unresolved motions and to ensure that kinetic energy is removed from the

simulation at the appropriate rate (which amounts to modelling the effective sgs

stresses created in the fluid).

● Reynolds-averaged Navier–Stokes (RANS) equations, in which the effects of

all the turbulent fluctuations are subsumed within the model – generally termed

the turbulence model. As with LES, the non-linearity of the convective trans-

port means that models are needed to account for the effective turbulent fluxes

of momentum, enthalpy and chemical species in their respective transport equa-

tions. These are termed the turbulent (or Reynolds) stresses and the turbulent

heat or mass fluxes; they emerge naturally in Chapter 2 and are shown symbol-

ically as ui u j and θu j , where ui and θ denote turbulent fluctuations of velocity

and the scalar in question about their mean value and the overbar implies time

averaging.

It is this second approach to modelling turbulence that is the principal focus of the

present book. There are also strategies that are, effectively, a blend of these two

approaches. Such schemes form the subject of the book’s final chapter; but, for

the present, they are not considered further, except to remark that the development

of such hybrid approaches reflects, in part, the inadequacies of the RANS models

that are most commonly used in engineering computations. Thus, if more gener-

ally applicable approaches to RANS closure are adopted, that, on the one hand,

reduces the need to resort to such hybrid LES-RANS schemes while, on the other,

also provides a more secure RANS component in situations where such combined

approaches are necessary or desirable.

A comparative illustration of the numerical resolution of turbulent flow in a

pipe or channel required by these different numerical approaches – DNS, LES

and RANS – is shown in Fig. 1.1. A random-like oscillating signal with sharp

peaks (top figure, left) provides a snapshot of the true instantaneous velocity, Û ,

in a vertical cross plane. A properly resolved DNS (with the computational cells
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Fig. 1.1 Illustrative comparison of DNS, LES and RANS simulations of a fully
developed, steady turbulent flow in a pipe or a plane channel. Top: typical com-

putational grids and sketches of a set of instantaneous velocity profiles (Û ) from

DNS, filtered velocity profiles (Ũ ) from LES, and the time-averaged profile (Ū )
obtained by RANS. Centre: a sketch of the resolved energy spectrum E(κ) for
DNS and LES (note: RANS is also called ‘one-point closure’ because it com-
putes the averaged turbulence properties at a point in space with no information
on the turbulence spectrum). Bottom: time signal at a point in the flow and typical
time steps for DNS and LES. The RANS solution, by definition, gives a constant
velocity at a point in a steady flow.
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4 Introduction

smaller than the smallest important eddy size) will provide the complete range of

wavelengths of velocity fluctuations. The instantaneous velocity profile obtained

by LES (top figure, middle) also shows a range of wavelengths, but because the

computational mesh is coarser, the signal is somewhat smoother, representing the

filtered velocity Ũ . High frequencies, i.e. those with a wavelength smaller than the

computational cells, are absent because they have been filtered out. The top-right

figure shows the time-averaged velocity Ū which exhibits a smooth profile that can

be obtained with a much coarser grid and which, for a simple shear flow such as

considered here, may be just two dimensional.

The second row of figures illustrates the resolved energy spectrum E(κ) deter-

mined using each of the methods. Here E(κ) represents the contribution to the

turbulence kinetic energy from all Fourier modes in the range from κ to κ + dκ ,

where κ = 2π/λ is the wavenumber modulus and λ is the wavelength. Naturally,

DNS should provide the complete spectrum, while LES excludes only the high

wavenumber portion (beyond κc = 2π/�, where � is the characteristic mesh size).

In contrast, RANS can provide no information about the turbulence spectrum, but

simply the value of the turbulence energy that would be obtained by integrating

over the whole wavenumber range for any point in space.

The bottom figure illustrates the three methods in a different way: here a time

record of fluid velocity is shown at a point in space in a steady flow. Again, the

strongly oscillating peaky signal (such as would be recorded by a hot-wire ane-

mometer) is representative of a typical DNS of velocity fluctuations at a point.

The smoother oscillating signal is a typical LES result, whereas the RANS record

would simply give a constant value. Resolving the DNS signal requires very small

time steps, whereas LES tolerates a somewhat larger time step corresponding with

the coarser computational mesh.

Both LES and RANS have particular strengths and dedicated proponents.

Because, using LES, with the numerical solver one resolves directly a large pro-

portion of the energy-containing turbulent motions, the model is less crucial to the

computed behaviour of the flow than it is with RANS. Thus, a far from accurate

sgs model may nevertheless lead to satisfactory numerical simulations. Just how

important the sgs model is naturally depends on how large a proportion of the total

effect of the turbulence it is required to carry. Currently, the most common strat-

egy in sgs modelling is to assume that the magnitude of the components of the sgs

stresses is directly proportional to the corresponding components of the resolved

strain, the coefficient of proportionality being what is termed the sgs kinematic vis-

cosity. The computational cost of an LES calculation naturally depends greatly on

the fineness of the computational mesh chosen.

With a RANS approach, to a far greater extent than with LES, the fidelity

of the computed flow hinges on a wise choice of model. The great majority

of computations at present, particularly those for industrial applications for
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complex-shaped configurations, still employ a linear eddy-viscosity model where

the local value of the turbulent (or eddy) kinematic viscosity, vt , is computed in

the course of the solution, usually by way of supplementary transport equations

for what amount to representative length and time scales for the energy-containing

turbulent motions.

Within RANS there is, however, a hierarchy of alternative, more elaborate mod-

elling strategies available, ranging from non-isotropic turbulent viscosity models

to schemes which provide modelled transport equations of the individual turbulent

stresses (or second moments) as well as their diffusion (the third moments). The

focus of this book is on such alternative strategies with our primary attention being

on modelling the second moments. The reason for this choice is simply that tur-

bulent shear flows are not in any general sense describable by a model based on a

linear eddy-viscosity model, while a well-crafted second-moment closure extends

greatly the range of flows and phenomena that can be captured. Merely consider-

ing the stress-generation processes, as is done briefly in Section 1.3, allows one to

appreciate why turbulent flows respond, qualitatively, as they do to the application

of mean flow deformations of various types.

The discussion on modelling via second-moment closure has so far consid-

ered simply the turbulent stresses. If the processes of interest involve heat or

mass transport, the averaged forms of the thermal energy and species transport

equations likewise contain unknown turbulent second-moment correlations: the

turbulent heat and species fluxes. Within a linear eddy-viscosity scheme these rates

of transfer in any direction are taken directly proportional to the corresponding

spatial gradient of mean temperature and mean species concentration, respec-

tively. Such an assumption has similar shortcomings to that of the eddy viscosity

approximation for momentum transport. Solving transport equations for these other

second moments brings corresponding benefits to those for the turbulent stresses,

especially where buoyant force fields are significant.

1.3 A preview of the mean-strain generation processes

in the stress-transport equation

One of the attractions of second-moment closure compared with simpler

approaches to modelling is that the second-moment generation terms are exactly

represented and thus require no further approximation. This fact means that, where

these terms are major contributors to the budget for the second moment in question,

one is half-way to closure without having to make any approximations. More-

over, without completing a model for the remaining processes, one can often

infer the character of a turbulent flow just by simply noting how the generation
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6 Introduction

Fig. 1.2 A simple shear flow: (a) typical mean velocity profile; (b) turbulent
normal stress components in a plane channel flow, as a function of the non-
dimensional wall distance x+

2 ≡ x2Uτ/ν (where Uτ is the wall friction velocity
and ν is fluid kinematic viscosity). From the DNS of Kim et al. (1987).

is distributed among the turbulent stresses or heat fluxes for different externally

applied conditions.

A formal derivation of the second-moment equations is deferred to Chapter 2 but

here, to convey in advance some impression of the insight gained from a knowledge

of the mean-strain generation process, we examine a few examples for commonly

arising strain fields. In the absence of force fields, the interaction between the mean

strain and the existing turbulence provides the source for further stress creation.

Thus, in most circumstances, once a flow becomes turbulent it remains turbulent.

The turbulent stress-generation tensor, Pi j , in a uniform density flow will be shown

in §2.3 to be given by

Pi j = −

(

ui uk

∂U j

∂xk

+ u j uk

∂Ui

∂xk

)

(1.1)

where ui u j denotes the turbulent stress and ∂Ui/∂xk is the gradient of the mean-

velocity component in direction xk .

Let us first see how these generation terms are distributed among the different

Reynolds-stress components for the case of a simple shear flow where the mean

flow is purely in direction x1 and varies only in the x2 direction, Fig. 1.2a. This

is very nearly the situation that applies in a two-dimensional boundary layer. The

resultant values of Pi j for each of the six stress components are obtained by assign-

ing appropriate values to i and j . The repeated subscript k signals that elements

carrying that subscript are to be summed with k taking successively the values 1, 2
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1.3 A preview of the mean-strain generation processes 7

Fig. 1.3 Example of a mildly curved turbulent shear flow.

and 3. In the present case, however, the mean velocity varies only in direction x2,

so only k = 2 makes a contribution to Pi j . The reader may thus readily verify that:

u2
1 P11 = −2 u1u2

∂U1

∂x2

u2
2 P22 = 0

u3
3 P33 = 0

u1u3 P13 = 0

u2u3 P23 = 0

u1u2 P12 = −u2
2

∂U1

∂x2

.

(1.2)

It is noted from the last of these results that the generation rate of the shear stress,

u1u2, is opposite in sign from the mean velocity gradient, a fact which explains

why the shear stress itself normally has a sign opposite from the velocity gradient.

Note, too, that turbulent velocity fluctuations in the direction of the mean veloc-

ity gradient are instrumental in creating that shear stress (or momentum transfer).

Regarding the normal stresses, it is perhaps surprising that the only component in

which there is a generation is the streamwise component, u2
1. As reference to thin

shear flow data readily confirms, Fig. 1.2b, this component is by far the largest

stress though turbulent fluctuations do occur in all directions. Where, in practice,

the source of the fluctuating energy (or normal stresses) in directions x2 and x3

comes from will become clear in Chapter 2.

Let us next add a small degree of complexity to the strain field by imagining a

weak streamline curvature in the x1–x2 plane, Fig. 1.3. We retain Cartesian coordi-

nates so the curvature manifests itself by a non-zero value of ∂U2/∂x1. Thus, from

Eq. (1.1) the shear-stress generation becomes:

P12 = −

(

u2
2

∂U1

∂x2

+ u2
1

∂U2

∂x1

)

. (1.3)
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8 Introduction

Fig. 1.4 Sketch of the stagnation region in a jet impinging normally on a flat wall.

It is evident from Fig. 1.2b that even far from the wall u2
1 is at least twice as large

as u2
2, a situation that also pertains in strong free shear flows, like a jet. In a flow past

a solid surface, however, as one progressively approaches the wall, the disparity

between the two normal stresses becomes progressively greater, Fig. 1.2b. Thus,

the effect of the curvature term in Eq. (1.3) becomes greatly amplified. Indeed, the

great sensitivity of boundary layers to wall curvature has been known for many

years (Bradshaw, 1973). If, however, one were to assume turbulent stresses were

represented by an isotropic turbulent viscosity, νt , one would conclude:

u1u2 = −νt

(

∂U1

∂x2

+
∂U2

∂x1

)

. (1.4)

In this representation, the weighting of the two strain components is equal, each

being multiplied by the scalar turbulent viscosity.1 The above example provides the

first illustration of the over-simplification produced by the eddy viscosity formula

alluded to in §1.2.

An even sharper example is provided in the case of impinging flow. Let us con-

sider the rate at which turbulent kinetic energy is being produced by virtue of the

mean-flow straining along the centre-line of a plane, symmetric stagnation flow,

Fig. 1.4. The turbulence energy, k, is just half the sum of the normal stresses and

its production rate, Pk , is thus:

Pk = −ui u j

∂Ui

∂x j

. (1.5)

Along the symmetry plane the turbulence energy generation arises purely from the

normal strains, which, we assume, are adequately represented by the potential flow

solution for plane stagnation flow: ∂U1/∂x1 = −∂U2/∂x2 = C , a constant.

1 It should be recognized that Eq. (1.3) expresses the production rate of the shear stress, while Eq. (1.4) refers to
the shear stress itself. However, as will be seen later, at least in stress components with major stress generation
terms, the stress production rate is indeed closely related to the magnitude of the stress.
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Thus:

Pk = −

(

u2
1

∂U1

∂x1

+ u2
2

∂U2

∂x2

)

= C
(

u2
2 − u2

1

)

. (1.6)

From Eq. (1.6) it is evident that for this flow the rate of production of turbulent

kinetic energy depends on the difference between the normal stresses, i.e. on the

anisotropy of the turbulent stress field. The value of Pk may be positive, negative

or zero depending on the relative levels of the two normal stresses. If, however,

the turbulence energy generation had been represented by a turbulent viscosity, it

is easily verified that the following form would be obtained:

Pk = 4νtC
2. (1.7)

Equation (1.7) implies no such sensitivity to anisotropy; indeed, in all circum-

stances it returns an erroneously high energy generation rate. Computations of

impinging flows with eddy viscosity models thus lead to quite spurious peaks of

turbulence energy in the vicinity of a stagnation point unless problem-specific cor-

rections are adopted (Taulbee and Tran, 1988; Craft et al., 1993; Durbin, 1996). A

similar anomalous outcome of using eddy-viscosity models has also been observed

in other flows where normal straining plays an important role. For example, both

the analytical and numerical solutions for confined homogeneous turbulence sub-

jected to cyclic compressive/dilatational strain show that depending on the sign of

the strain the turbulence production takes alternately positive and negative values,

resulting in zero net production over a cycle (Hadžić et al., 2001). Because of the

continuous dissipation, however, both the turbulent kinetic energy and the charac-

teristic turbulence frequency (the reciprocal of the turbulent time scale) eventually

decay, irrespective of the initial turbulence level, anisotropy of the stress field or

Reynolds number. In contrast, eddy viscosity models predict an erroneous con-

tinual increase of the turbulent kinetic energy because of the incorrect positive

generation of turbulence during the compression phase. Other examples where the

broad character of a turbulent flow can be inferred from considering the stress gen-

eration terms may be found in flows affected by body forces whether due to system

rotation (Coriolis force), density stratification (buoyant force) or magnetic field

(Lorentz force). Such cases are discussed in detail in §4.5.

1.4 Some consequences of the no-slip boundary condition at a wall

At a rigid, stationary wall the velocity goes to zero, at least in the continuum regime

to which attention is limited. This condition applies to the turbulent fluctuations

as well as to the mean velocity. Thus the turbulent stresses all vanish at the wall

and wall friction is exerted through purely viscous effects just as in laminar flow.

www.cambridge.org/9781108835060
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83506-0 — Modelling Turbulence in Engineering and the Environment
Kemal Hanjalić , Brian Launder 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Introduction

As is evident from Fig. 1.2b, however, the turbulent velocity components do not

all increase at the same rate as one moves away from the wall. There are several

reasons for this, as will emerge in Chapters 4 and 6, but one that is examined here

briefly is the constraint applied by mass conservation. For a uniform density flow,

as will be shown formally in §2.3, the turbulent velocity fluctuations as well as the

mean flow are divergence free:

∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

= 0. (1.8)

This equation applies everywhere, including the fluid–wall interface x2 = 0. But

on this surface ∂u1/∂x1 = ∂u3/∂x3 = 0 since u1 and u3 are zero throughout the

x1 ∼ x3 plane. It follows that ∂u2/∂x2 must also be identically zero there. Thus,

we deduce that, while the root-mean-square values of u1 and u3 initially increase

linearly with distance from the wall, x2, the corresponding value of u2 can only

increase as x2
2 , while the shear stress u1u2 can at most increase as x3

2 . These inferred

exponents of the different stress-component variations will be seen in Chapter 6 to

be fully in accord with DNS data.

The fact that u1u2 increases as the cube of the distance from the wall implies

that initially, for small x2, this turbulent shear stress will be negligible compared

with viscous shear stress. As one proceeds further from the wall, however, one

enters a region where there is a rapid changeover to a regime where the turbulent

stress becomes the dominant contributor to momentum transfer. Since the total

shear stress (viscous plus turbulent) is very nearly constant over what is a very thin

layer (compared with the shear flow as a whole), there will inevitably be a rapid

reduction in the slope of the mean velocity. That is, one moves from a region where

viscous action (ν∂U1/∂x2) is the principal mechanism for momentum transfer to

one where most of the momentum transport is by turbulence. This rapid changeover

is clearly evident from the mean velocity profiles in Fig. 1.1, top right (denoted as

RANS), and in more detail in Fig. 6.1.

In fact, in a simple shear flow, the maximum generation rate of turbulent kinetic

energy occurs right in this changeover region. For, this will occur where

d

dx2

(

u1u2

dU1

dx2

)

= 0, (1.9)

or, on expanding the differential, where:

u1u2

d2U1

dx2
2

+
dU1

dx2

d u1u2

dx2

= 0. (1.10)

On the assumption that the total shear stress ((νdU1/dx2)−u1u2) is changing much

less rapidly than its constituent parts, we can replace the turbulent shear-stress

derivative in Eq. (1.10) by the corresponding derivative of viscous stress. With this
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