CAMBRIDGE

1

2

Cambridge University Press 978-1-108-83495-7 — Vibration Protection Systems Chang-Myung Lee, Vladimir Nicholas Goverdovskiy Table of Contents <u>More Information</u>

Contents

Prefac	се		ра
Ackno	owledg	ments	
Gloss	ary		
Vibrat	tions D	estroying Human–Machine Systems Inside and Outside	
1.1	Introd	uction	
1.2	Vibrat	ions and Vibration Protection in High-Speed Train Systems	
	1.2.1	The Limits of Transport Infra-frequency Vibrations: Quality	
		Criteria for Vibration Protection Systems	
	1.2.2	Vibration Exposure Affecting Humans Inside and Outside	
		a High-Speed Train	
1.3	Vibrat	ions and Vibration Protection in Helicopters	
	1.3.1	Dangerous Vibrations Generated by Mechanical Systems of	
		a Helicopter	
	1.3.2	Efficiency of Vibration Protection Technologies	
		in Helicopters	
1.4	Vibrat	ions and Vibration Protection in Transport Land Vehicles	
:	and A	utomotive Construction Equipment	
	1.4.1	Vibrations in Land Vehicles and Construction Equipment	
	1.4.2	Efficiency of Existing Vibration Protection Systems in Vehicles	
1.5	Conclu	usions	
Refere	ences		
Vibrat	tion Pr	otection Systems with Negative and Quasi-Zero Stiffness:	
Develo	opmen	tal Trends and Theory Baseline	
2.1	Introd	uction	
2.2	Advan	ces in Development and Use of Vibration Protection Mechanisms	5
,	with N	legative and Quasi-Zero Stiffness in Small	
	2.2.1	Classification of Most Viable Structures and Mechanisms	
	2.2.2	Performance of Mechanisms with Negative and Quasi-Zero	
		Stiffness in Small	
	2.2.3	An Experience in Development and Use of Vibration	
		Protection Mechanisms with Negative and Quasi-Zero Stiffness	

۷

vi	Cont	ents	
	2.3	Some Theoretical Generalities for Designing Mechanisms with	26
		Negative and Quasi-Zero Stiffness in Small	36
		2.3.1 Link Mechanisms	37
		2.3.2 Cam Mechanisms	38
	2.4	2.3.3 Electromagnetic Mechanisms	39
	2.4	A Generic Model of Parametric Elements That Can Reveal the	40
		Negative and Quasi-Zero Stiffness in Large	40
		2.4.1 Problem Delinition	40
	2.5	2.4.2 Solving the Problem	43
	2.5 Dafa	Conclusions	49
	Refe	rences	50
3	Mod	eling of Elastic Postbuckling in Large and Dimensioning the Mechanisms	
	with	Negative Stiffness	52
	3.1		52
	3.2	Postbuckling in Large of Thin-Walled Structures	52
		3.2.1 Geometrically Nonlinear Deformation of Elastic Thin-Walled	50
		Structures	52
		3.2.2 Iterative Procedure for Problem Solving	56
	2.2	3.2.3 Equation Formulation	57
	3.3	Designing the Mechanisms with Parametric (Elastic) Elements of	()
		Negative Stiffness in Large	62
		3.3.1 A Finite Element Model of the Parametric Elements	62
		5.5.2 Procedure for Designing the Mechanisms with Parametric	
	2.4	Sensitivity of Machanism Derformance to Dimension Change	00
	5.4 2.5	Sensitivity of Mechanism Performance to Dimension Change	71
	3.3	2.5.1 Machanisms for a Seat Sugrangian	// 77
		2.5.2. Machanisms for a Cabin Mounting of a Usawy Truck	70
		2.5.2 Mechanisms for a Cabin Mounting of a Heavy Truck	19
		5.5.5 Mechanisms for a violation-isolating fable supporting a	80
	26	Conclusions	00
	S.0 Refe	erences	81
	The	Tune and Number Supplies of Eurotian Consecting Machanisma	05
4	4 1		6J 05
	4.1	Introduction Methods of Structural Design of Euroption Constraint Machanisms	83 86
	4.2	Structural Sources of Derformance Feilures of the Machanisms	80
	4.5	4.2.1 "Elementel" Level of Derformance Degradation	09 00
		4.5.1 Elemental Level of Performance Degradation	90
		4.5.2 Subsystemi Level of Performance Degradation	92
	A A	4.5.5 System Level of Performance Degradation	93
	4.4	Decementaria Elementa of Negative Stifferer	02
		Parametric Elements of Negative Stiffness	93

CAMBRIDGE

		Contents	vii
		4.4.1 A General Theory	95
		4.4.2 Entering the Redundancy of Different Levels	96
		4.4.3 Optimally Structured Function-Generating Mechanisms with	
		Redundant Kinematic Chains	99
	4.5	Methods of Structural Design of Function-Generating Mechanisms for	
		Vibration Protection Systems of Humans and Engineering	101
		4.5.1 Structural Design of Function-Generating Mechanisms for	
		Human Operator Vibration Protection Systems	102
		4.5.2 Structural Design of Function-Generating Mechanisms for	
		Technical Vibration Protection Systems	108
	4.6	Conclusions	113
	Refe	erences	114
5	Dyna	amics of Systems with Sign-Changing Stiffness: Chaotic Vibration	
	Moti	ion and Stability Conditions	116
	5.1	Introduction	116
	5.2	Methods of Detecting and Measuring Chaos	117
		5.2.1 Qualitative Methods	117
		5.2.2 Quantitative Methods	122
	5.3	Selection of Systems with Negative Stiffness	126
		5.3.1 Stability of Mechanisms with Negative Stiffness of the	
		First Type	128
		5.3.2 Stability of Mechanisms with Negative Stiffness of the	
		Second Type	131
	5.4	Conditions of Stable Motion of the Active Suspensions with	100
		Redundant Mechanisms of Negative Stiffness	133
	5.5	Conclusions	142
	Refe	erences	142
6	Dyna	amics of Systems with Sign-Changing Stiffness: Damping Control	145
	6.1	Introduction	145
	6.2	Structural Damping in Springs with Negative Stiffness	146
	6.3	Critical Damping in Function-Generating Mechanisms	153
	6.4	Limiting Efficiency of Vibration Protection Systems with Small	
		Stiffness due to Slip Damping	160
	6.5	Experimental Proof and Discussion of Practical Payoffs	161
		6.5.1 Comparative Assessment and Minimization of	
		Structural Damping	162
		6.5.2 Minimization of Slip Damping	164
		6.5.3 Minimization of Damping in Active Suspensions with	
		Redundant Mechanisms of Negative Stiffness	166
	6.6	Conclusions	169
	Refe	erences	170

viii	Cont	ents			
7	Dynamics of Systems with Sign-Changing Stiffness: Features of Active				
	Parametric and Motion Control				
	7.1	Introduction	172		
	7.2	Control Object	174		
	7.3	Parameter Control	175		
		7.3.1 Stiffness Control	175		
		7.3.2 Damping Control	177		
	7.4	Equation Formulation	178		
	7.5	Simulated Results	181		
		7.5.1 A Range of Stiffness Minima	181		
		7.5.2 Variable Structure of Air Damping and Criteria of Stability			
		in a Transient	185		
	7.6	Control Algorithms	188		
		7.6.1 Position Control within the Range of a Reference Height	189		
		7.6.2 Controlling the Reference Position of the Object Protected	190		
		7.6.3 Adaptive Control (Invariant Control)	191		
		7.6.4 Stabilization: A Mix of Feedback Control and			
		Invariant Control	191		
	7.7	Simulating and Control Equipment	192		
		7.7.1 Organization of an Electric-Pneumatic Control System	192		
		7.7.2 Measurement of the Vibrations and Impulsive Responses	194		
	7.8	Conclusions	196		
	Refe	prences	197		
8	Methods of Experimental Study of Vibration Protection Systems with				
	Nega	ative and Quasi-Zero Stiffness	201		
	8.1	Introduction	201		
	8.2	Statics	202		
		8.2.1 Goal and Objectives of the Experiments	202		
		8.2.2 Measurands	202		
		8.2.3 Test Equipment: Measuring Analysis	203		
		8.2.4 Designing the Force-Displacement Characteristics for the			
		Systems with Different Types of Parametric			
		(Elastic) Elements	206		
		8.2.5 Strain State Analysis of Parametric and Structural Elements of			
		Redundant Mechanisms with Negative Stiffness	217		
	8.3	Dynamics	220		
		8.3.1 Goal and Objectives of the Experiments	220		
		8.3.2 Instrumentation Complex for Vibration Testing	220		
		8.3.3 Measurands	226		
		8.3.4 Quality Criteria for Designed Vibration Protection Systems	227		
		8.3.5 Results and Discussion on Dynamics of Designed Vibration			
		Protection Systems	228		

CAMBRIDGE

		Contents	ix
	8.4 C	Conclusions	235
	Referen	nces	236
9	In Harr	nony with Conventional Vibration Protection Systems	238
	9.1 II	ntroduction	238
	9.2 S	election of Parametric (Elastic) Elements with a Given	
	L	Load Capacity	238
	9	2.1 A Classification of Parametric Elements with	
		Positive Stiffness	238
	9	2.2 "Direct" Methods to Soft a Vibration Protection System	243
	9	2.2.3 A Concept of Vibration Protection with No Elastic Elements	245
	9.3 E	Effectiveness of External Damping Mechanisms in	
	Р	Pneumatic Suspensions	248
	9	2.3.1 Elements to Avoid the End-Stop Impact	248
	9	0.3.2 Comparison of Efficiency Using Passive, Semiactive, and	
		Active Dampers	250
	9.4 T	ransmission to Provide Harmonious Operation of the Mechanisms	
	W	with Negative and Quasi-Zero Stiffness in a Vibration	
	Р	Protection System	252
	9	0.4.1 Gears for Joining Mechanisms with Negative Stiffness to the	
		Vibration Protection Systems	253
	9	0.4.2 Mini-Gears for Pre-adjusting Active Vibration Protection System	18
		with Quasi-Zero Stiffness	255
	9.5 C	Conclusions	259
	Referen	nces	260
10	Develo	pment and Use of Vibration Protection Systems with Negative	
	and Qu	asi-Zero Stiffness: Practice and Prospects	264
	10.1 Iı	ntroduction	264
	10.2 P	reparing for Measuring Vibration and Testing Systems in the Field	264
	1	0.2.1 Arrangements of Suspensions with Small Stiffness	
		and Damping	264
	1	0.2.2 Vibration Measurement Procedures and Instruments in	
		the Field	266
	10.3 E	Experiments and Practical Uses in Unsuspended Machines	269
	1	0.3.1 Agricultural Machines	269
	1	0.3.2 Construction Equipment	270
	1	0.3.3 Helicopters	273
	10.4 E	Experiments, Practical Uses, and Prospects in Suspended Machines	275
	1	0.4.1 Buses and Heavy Trucks	276
	1	0.4.2 High-Speed Railroad Rolling Stock and	
		Infrastructural Objects	277
	10.5 C	Conclusions	283

Cambridge University Press 978-1-108-83495-7 — Vibration Protection Systems Chang-Myung Lee, Vladimir Nicholas Goverdovskiy Table of Contents <u>More Information</u>

x Contents

10.6 Afterword		
10.6.1 Motivation	285	
10.6.2 A Prediction for the Development of Next-Generation		
Systems with Negative and Quasi-Zero Stiffness	285	
10.6.3 An Experimental Validation	288	
References	291	
Index	294	