Contents

Acknowledgements xxi
Nomenclature xiii
Preface xvii

I Conceptual Foundation of Complexity Science 1

Introduction to Part I 3

1 The Science of Emergence 5
1.1 The Importance of Interaction 9
1.2 Past Views on Emergence 15
1.3 Further Reading 18
1.4 Exercises and Projects 19

2 Conceptual Framework of Emergence 21
2.1 Emergence of a Characteristic Scale or Lack of Scale 23
2.2 Emergence of Collective Robust Degrees of Freedom 26
2.3 Structural Coherence 28
2.4 Evolutionary Diffusion 31
2.5 Breaking of Symmetry 33
2.6 Emergence of Networks 35
2.7 Temporal Mode 37
2.8 Adaptive and Evolutionary Dynamics 39
2.9 Further Reading 40
2.10 Exercises and Projects 41

3 Specific Types of Emergent Behaviour 46
3.1 Ising-Type Models: Transitions and Criticality 48
3.2 Network Models and Scale vs. No Scale 52
3.3 Emergence of Coherence in Time: Synchronisation 57
3.4 Evolutionary Dynamics: Adaptation 60
3.5 Mean-Field Modelling: Dimensionality and Forecasting 64
3.6 Further Reading 69
3.7 Exercises and Projects 70
4 The Value of Prototypical Models of Emergence

4.1 The Need for Simplification of Models

4.2 O’Keeffe–Einstein Propositions at Work

4.3 Further Reading

4.4 Exercises and Projects

II Mathematical Tools of Complexity Science

5 Branching Processes

5.1 Generator Functions: Sizes and Lifetimes

5.1.1 Size of the Progeny

5.1.2 Time to Extinction

5.2 Branching Trees and Random Walks

5.3 Further Reading

5.4 Exercises and Projects

6 Statistical Mechanics

6.1 Probabilities and Ensembles

6.2 The Ising Model

6.3 The Peculiar Nature of the Critical Point

6.4 Fluctuations, Response and Correlations

6.5 Examples of Correlation Functions: Brain, Flocks of Birds, Finance

6.6 Diverging Range of Correlations

6.6.1 Correlation Function – Exact Approach

6.6.2 Correlation Function – Intuitive Discussion

6.7 The Two-Dimensional XY Model

6.7.1 2d XY: Some Mathematical Details

6.7.2 Vortex Unbinding

6.7.3 The Vortex Unbinding Transition in Other Systems

6.8 Further Reading

6.9 Exercises and Projects

7 Synchronisation

7.1 The Kuramoto Model: The Onset of Synchronisation

7.2 Chimera States

7.3 Further Reading

7.4 Exercises and Projects

8 Network Theory

8.1 Basic Concepts

8.2 Measures of the Importance of Nodes
8.2.1 Degree Centrality 179
8.2.2 Eigenvector Centrality 184
8.2.3 Closeness Centrality 187
8.2.4 Betweenness Centrality 187
8.2.5 How Well Does it Work? 188
8.3 Community Detection 188
8.4 Spreading on Networks – Giant Cluster 196
8.5 Analysis of Dynamics of and on Networks 203
 8.5.1 Generating Networks 204
 8.5.2 Random Walk on Networks 212
 8.5.3 Synchronisation on Networks 216
8.6 Further Reading 224
8.7 Exercises and Projects 225

9 Information Theory and Entropy 230
 9.1 Information Theory and Interdependence 232
 9.2 Entropy and Estimates of Causal Relations 237
 9.3 From Time Series to Networks 241
 9.4 From Entropy to Probability Distribution 245
 9.5 Measures of Degrees of Complexity 256
 9.5.1 Lempel–Ziv Complexity Measure 256
 9.5.2 Information-Theoretic Approach to Emergence 259
 9.5.3 Group Entropy Measure of Complexity 272
 9.6 Further Reading 274
 9.7 Exercises and Projects 275

10 Stochastic Dynamics and Equations for the Probabilities 279
 10.1 Random Walk and Diffusion 280
 10.2 First Passage and First Return Times 293
 10.3 Correlations in Time 297
 10.4 Random Walk with Persistence or Anti-persistence: Hurst Exponent 302
 10.5 Stationary Diffusion: Ornstein–Uhlenbeck Process 307
 10.6 Evolutionary Dynamics and Clustering 309
 10.7 Master Equation, Coarse Graining and Free Energy 313
 10.8 Further Reading 318
 10.9 Exercises and Projects 319

11 Agent-Based Modelling 324
 11.1 Flocks of Birds or Schools of Fish 325
 11.2 Models of Segregation 328
 11.3 The Tangled Nature Model 337
 11.4 Further Reading 349
 11.5 Exercises and Projects 350
Contents

12 Intermittency

12.1 Self-Organised Criticality 357
 12.1.1 Sandpile Models 358
 12.1.2 Mean-Field Analysis 361
 12.1.3 Lessons from Sandpile Models 364
 12.1.4 Forest Fire Model 367
12.2 Record Dynamics 370
 12.2.1 Statistics of Records 371
 12.2.2 Spin Glasses, Superconductors, Ants and Evolution 375
12.3 Tangent Map Intermittency 379
12.4 Further Reading 382
12.5 Exercises and Projects 383

13 Tipping Points, Transitions and Forecasting

13.1 Externally Induced Transitions 387
13.2 Intrinsic Instability 389
13.3 Further Reading 395
13.4 Exercises and Projects 395

14 Concluding Comments and a Look to the Future

14.1 Further Reading 399

Glossary 401
References 411
Index 436