adaptation and evolutionary dynamics
importance of surrounding structures
to, 61
mutation, 62–63
network structures, 61–63
reproducing agent, 62
adaptive evolutionary dynamics, 39–40
adjacency matrix, 179
agent-based modelling (ABM)
computer simulation, 324
defined, 324
segregation models, 328–337
Tangled Nature model, 337–349
Vicsek model of flocking behaviour, 325–327
Anderson, Philip W., 16
anti-persistence (random walk), 302–306
Architectures of Complexity, The, 17
Aristotle, 13, 15
Bak–Sneppen model, 80
betweenness centrality in network theory, 187–188
binomial process, 281
Bohr, Niels, 15
Boltzmann weights and Shannon entropy, 116–118
branching process
defined, 25, 93, 94
generator functions, 95–103
random walks, 103–106
breaking of symmetry, 16
canonical ensemble, 113
Cartesian combinations, 249
causal relations entropy estimates, 257–240
cellular automata, 17
Central Limit Theorem, 10
characteristic scale, 23–25
chimera states
defined, 30
synchronisation, 170–174
closeness centrality in network theory, 187
clustering and evolutionary dynamics, 309–313
collective robust degrees of freedom, 26–28
community detection in network theory, 188–196
complexity measures
group entropy, 272–273
information theory and emergence, 259–272
Lempel–Ziv, 256–259
complexity science, see also mathematics aim of, 13
and data science, 6
defined, 18, 397
descriptive definition, 5
dynamics and evolution, 47
focus of, compared to other sciences, 7
and game theory, 6
multidisciplinary nature of, 7
and network science, 6
open questions in, 398–399
shift to focus to processes at aggregate level, 8
synchronisation, 48
as systematic investigation of the general patterns and structures of emergent phenomena, 6
transdisciplinary nature of, 397
working definition, 5
configuration model
defined, 197
network generation, 204–205
correlation function ranges
exact approach, 134–139
intuitive discussion, 139–143
correlations in time and dynamical probabilities, 297–302
course-grained level, 313–315
critical phenomena, 50
critical point
correlation examples, 132
correlations, 129–132
defined, 50
fluctuations, 132
nature of, 125–127
response function, 128–129
critical state, 26
critical temperature, 125
data science and complexity science, 6
degree centrality in network theory, 179–184
diffusion, evolutionary, 31–33
Ornstein–Uhlenbeck process, 307–308
random walk and, 280–293
diffusion process, 28
diffusion process types, 31
diffusion equation, 280
dynamic network generation, 205–209
dynamical systems theory
defined, 65
stochastic, 279–317
dynamics and evolution intermittency, 356–381
eigenvector centrality in network theory, 184–187
electroencephalogram (EEG), 36
emergence and complexity science
Adam Smith and, 13
adaptive evolutionary dynamics, 39–40
Aristotle and, 13
defined, 18
evolutionary adaptive dynamics and, 14
history of views on, 17
ideal gas, 10
information theory and, 259–272
laws between different types of components, 13
normal distribution, 14
process philosophy and, 13
social segregation, 12
statistical mechanics and, 110–155
emergence and complexity science, properties
characteristic scale, 23–25
collective robust degrees of freedom, 26–28
evolutionary diffusion, 31–33
network science, 35–37
structural coherence in space and time, 28–31
summary, 21
symmetry breaking, 33–35
temporal mode, 37–38
transitions, 34
emergence prototypical model usefulness
Bak–Sneppen and Tangled Nature model, 80
Ising model, 79
need for simplicity in, 76–78
Schelling model, 80
emergent behaviour models
evolutionary dynamics and adaptation, 60–64
Ising model, 48–52
Kuramoto model, 60
mean-field model, 64–69
network models, 52–56
synchronisation, 57–60
emergent structures, summary, 47
ensembles and probability
microcanonical ensemble, 111–113
entropy and information theory
causal relations estimates, 237–240
complexity measures, 272–273
defined, 113
degree of complexity measures, 256–274
master equation and, 315–317
probability distribution, 245–256
time series and networks, 241–244
error threshold, 46
evolutionary adaptive dynamics, 14
evolutionary diffusion, 31–33, 378
evolutionary dynamics, see also Tangled Nature model
evolutionary dynamics and clustering, 309–313
exact differential, 112
excess degree, 197
exponential growth, 25
field-theoretic methods, 312
first passage times, 280, 293
first return times, 280, 293
Fokker–Planck equation, 280
forecasting tipping points, 387–394
forest fire model, 367–370
Fourier transform and solution of equations, 286
Fourier transform graph, 219
fractals, 26
functional magnetic resonance imaging (fMRI)
brain scanner, 35
correlation functions, 133
scanner, 25
game theory and complexity science, 6
generator functions
proof, 95
sizes and lifetimes, 97–103
giant cluster, 196
giant cluster spreading in networks, 196–203
Gilbert model, 53, 55–56
half-links (configuration model), 204
hardwired network, 63
Hurst exponent, 302–306
ideal gas and emergence, 10
information science, 15
information theory and complexity science
background of, 230–232
degree of complexity measures, 256–274
emergence and, 259–272
interdependence, 232–237
information theory and entropy, 113
interdependence in information theory, 232–237
intermittency mode, 21
intermittent dynamics
record dynamics, 370–378
self-organised criticality (SOC), 357–370
tangent map, 379–381
Ising model
and statistical mechanics, 119–125
components of, 48
magnetic interpretation, 50
physics interpretation, 49
record dynamics examples, 375–376
usefulness of simplicity in, 79
kinetic energy, 29
Kuramoto model
synchronisation, 60
systems behaviour of, 164–170
Lagrange multipliers, 114–118
Laplacian on a network, 220–224
Lempel–Ziv complexity measure, 256–259
Lotka–Volterra model, 64
Louvain algorithm, 192
magnetic moments, 34
magnetoencephalography (MEG), 36
Marx, Karl, 77
master equation, 280, 282, 283, 313–317
mathematics, see also complexity science
agent-based modelling, 324–349
branching process, 93–106
entropy, 237–256
intermittent dynamics, 356–381
as language, 89–90
network theory, 177–219
statistical mechanics, 110–155
stochastic dynamics and probability equations, 279–317
synchronisation, 163–174
tipping points, 387–394
maximum energy principle, 113, 246
mean-field model
dimensionality, 64–67
and Ising model, 119–125
forecasting, 67–69
self-organised criticality (SOC), 361–364
microcanonical ensemble, 111–113
Millennium Bridge example, 57–58, 67
More Is Different, 16
Morin, Edgar, 17
mutation, 62–63, 68

network generation
background of, 204
dynamic, 205–209
steady-state evolution, 209–212
network models
dimension, 53–56
scale, 52–53
Tangled Nature model, 61–63
network models distribution
binomial, 54, 56
exponential growth, 54, 56
power law, 54, 56
network science
and complexity science, 6
emergence and, 35–37
entropy and, 241–244
network theory
basic concepts, 178
community detection, 188–196
giant cluster spreading, 196–203
history of, 177
language discrepancy around, 177
node importance measures, 179–188
network theory, dynamics
network generation, 204–212
random walk, 212–216
synchronisation, 216–219
node measure in network theory
betweenness centrality, 187–188
closeness centrality, 187
connectance, 179
degree centrality, 179–184
eigenvector centrality, 184–187
usefulness of, 188
non-equilibrium mode, 22
normal distribution, 14
occupied network, 63
On Complexity, 17
organized complexity, 15
Ornstein–Uhlenbeck process, 307–308
partition function, 112, 118
persistence (random walk), 302–306
phase transitions, 16
phenomenology
complexity science, 397

Tangled Nature model, 348–349
preferential attachment, 55–56
probability distribution
entropy and, 245–256
stochastic, 279–317
process philosophy, 13
progeny size and generator functions, 99–102
punctuated equilibrium, 21, 39, 80
quantum many-body theory, 16

random walk
branching trees and, 103–106
defined, 31
and diffusion, 280–293
network theory, 212–216
with persistence or anti-persistence, 302–306

record dynamics
background of, 370–371
statistics of records, 371–375
record dynamics examples
ants, 378
evolution, 378
Ising model, 375–376
superconductivity, 377–378
reproducing agent, 62, 93
resting state network, 37

sandpile models, 358–361, 364–367
scale-invariant phenomena, 50

Schelling model
defined, 12
detail usefulness, 80
segregation models, 328–337
self-organised criticality (SOC)
background of, 357
forest fire model, 367–370
mean-field analysis, 361–364
sandpile models, 358–361, 364–367
Shannon entropy and Boltzmann
weights, 116–118
Shannon–Khinchin axioms, 246
Simon, Herbert A., 17
simplicity in modelling
building blocks not always evident, 77–78
and complex phenomena, 76
in sociology and economics, 76–78
Marx on, 77

Tolstoy on, 77
Smith, Adam, 13
social segregation and complexity
science, 12
spin glass model, 121
spin quantum number, 89
spin waves, 144
stationary diffusion, 307–308
statistical mechanics
2d XY model, 155
correlation ranges, 133–143
critical point and, 125–127
ensembles, 110–119
Ising model, 119–125
steady-state evolution in network
generation, 209–212
structural coherence in space and time,
28–31
superconductivity
defined, 35
record dynamics examples, 377–378
synchronisation and, 58
symmetry breaking, 33–35
synchronisation, 21, 30, 48
chimera states, 170–174
defined, 163
Kuramoto model, 164–170
network theory, 216–219
as structure in time, 57–58
superconductivity, 58
tangent map intermittency, 379–381
Tangled Nature model, see also
evolutionary dynamics
adaptation and, 60–64
agent-based modelling (ABM),
337–349
killing events, 340–348
phenomenology, 348–349
reproduction events, 234
time dependence, 340
transitions, 68–69
usefulness of, 80
temporal graph signal transform, 219
temporal mode intermittency, 21
non-equilibrium, 22
overview, 37–38
time to extinction, 102–103

© in this web service Cambridge University Press & Assessment

www.cambridge.org
externally induced transitions, 387–388
intrinsic instability, 389–394
Tolstoy, Leo, 77
toy models, 75
transfer entropy, 236
transition, 34
2d XY model

mathematical details, 148–153
overview, 143
vortex unbinding, 152–154
up–down symmetry breaking, 34
Vicsek model of flocking behaviour, 325–327

vortex unbinding
2d XY model, 152–154
superconductors, crystals, 154–155
vortices, 144
Weaver, Warren, 15