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Vectors and Functions

There’s a great deal of interesting physics in the Schrödinger equation and

its solutions, and the mathematical underpinnings of that equation can be

expressed in several ways. It’s been my experience that students find it helpful

to see a combination of Erwin Schrödinger’s wave mechanics approach and

the matrix mechanics approach of Werner Heisenberg, as well as Paul Dirac’s

bra and ket notation. So these first two chapters provide the mathematical

foundations that will help you understand these different perspectives and

“languages” of quantum mechanics, beginning with the basics of vectors in

Section 1.1. With that basis in place, you can move on to Dirac notation

in Section 1.2 and abstract vectors and functions in Section 1.3. The rules

pertaining to complex numbers, vectors, and functions are reviewed in Section

1.4, followed by an explanation of orthogonal functions in Section 1.5, and

using the inner product to find components in Section 1.6. The final section of

this chapter (as in all later chapters) is a set of problems that will allow you

to exercise your understanding of the concepts and mathematical techniques

presented in this chapter. Remember that you can find full, interactive solutions

to every problem on the book’s website.

And since it’s easy to lose sight of the architectural plan of an elaborate

structure when you’re laying the foundation, as mentioned in the Preface you’ll

find in each section a plain-language statement of the main ideas of that section

as well as a short paragraph explaining the relevance of that development to the

Schrödinger equation and quantum mechanics.

As you look through this chapter, don’t forget that this book is modular, so

if you have a good understanding of the included topics and their relevance

to quantum mechanics, you should feel free to skip over this chapter and jump

into the discussions of operators and eigenfunctions in Chapter 2. And if you’re
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2 1 Vectors and Functions

already up to speed on those topics, the Schrödinger equation and quantum

wavefunctions await your attention in later chapters.

1.1 Vector Basics

If you pick up any book about quantum mechanics, you’re sure to find lots of

discussion about wavefunctions and the solutions to the Schrödinger equation.

But the language used to describe those functions, and the mathematical

techniques used to analyze them, are rooted in the world of vectors. I’ve

noticed that students who have a thorough understanding of basis vectors, inner

products, and vector components are far more likely to succeed when they

encounter the more advanced aspects of quantum mechanics, so this section is

all about vectors.

When you first learned about vectors, you probably thought of a vector as

an entity that has both magnitude (length) and direction (angles from some set

of axes). You may also have learned to write a vector as a letter with a little

arrow over its head (such as �A), and to “expand” a vector like this:

�A = Ax ı̂ + Ayĵ + Azk̂. (1.1)

In this expansion, Ax, Ay, and Az are the components of vector �A, and ı̂, ĵ ,

and k̂ are directional indicators called “basis vectors” of the coordinate system

you’re using to expand vector �A. In this case, that’s the Cartesian (x, y, z)

coordinate system shown in Fig. 1.1. It’s important to understand that vector
�A exists independently of any particular basis system; the same vector may be

expanded in many different basis systems.

The basis vectors ı̂, ĵ , and k̂ are also called “unit vectors” because they each

have length of one unit. And what unit is that? Whatever unit you’re using to

express the length of vector �A. It may help you to think of a unit vector as

defining one “step” along a coordinate axis, so an expression such as

�A = 5ı̂ − 2ĵ + 3k̂, (1.2)

tells you to take five steps in the (positive) x-direction, two steps in the

(negative) y-direction, and three steps in the (positive) z-direction to get from

the start to the end of the vector �A.

You may also recall that the magnitude (that is, the length or “norm”)

of a vector, usually written as | �A| or ‖ �A‖ , can be found from its Cartesian

components using the equation
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Figure 1.1 Vector �A with its Cartesian components Ax, Ay, and Az and the

Cartesian unit vectors ı̂, ĵ , and k̂.

| �A| =
√

A2
x + A2

y + A2
z , (1.3)

and that the negative of a vector (such as −�A) is a vector of the same length as
�A but pointed in the opposite direction.

Adding two vectors together can be done graphically, as shown in Fig. 1.2,

by sliding one vector (without changing its direction or length) so that its tail

is at the head of the other vector; the sum is a new vector drawn from the

tail of the undisplaced vector to the head of the displaced vector. Alternatively,

vectors may be added analytically by adding the components in each direction:

�A = Ax ı̂ + Ayĵ + Azk̂

+ �B = Bx ı̂ + Byĵ + Bzk̂

�C = �A+�B = (Ax + Bx)ı̂ + (Ay + By)ĵ + (Az + Bz)k̂. (1.4)

Another important operation is multiplying a vector by a scalar (that is, a

number with no directional indicator), which changes the length but not the

direction of the vector. So if α is a scalar, then

�D = α �A = α(Ax ı̂ + Ayĵ + Azk̂)

= αAx ı̂ + αAyĵ + αAzk̂.

www.cambridge.org/9781108834735
www.cambridge.org


Cambridge University Press
978-1-108-83473-5 — A Student's Guide to the Schrödinger Equation
Daniel A. Fleisch 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 1 Vectors and Functions
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Figure 1.2 Adding vectors
⇀
A and

⇀
B graphically by sliding the tail of vector

⇀
B to

the head of vector
⇀
A without changing its length or direction.

Scaling each component equally (by factor α) means that vector �D points in

the same direction as �A, but the length of �D is

| �D| =
√

D2
x + D2

y + D2
z

=
√

(αAx)2 + (αAy)2 + (αAz)2

=
√

α2(A2
x + A2

y + A2
z) = α| �A|.

So the vector’s length is scaled by the factor α, but its direction remains the

same (unless α is negative, in which case the direction reverses, but the vector

still lies along the same line).

Relevance to Quantum Mechanics

As you’ll see in later chapters, the solutions to the Schrödinger equation

are quantum wavefunctions that behave like generalized higher-dimensional

vectors. That means they can be added together to form a new wavefunction

and they can be multiplied by scalars without changing their “direction.”

How functions can have “length” and “direction” is explained in Chapter 2.

In addition to summing vectors, multiplying vectors by scalars, and finding

the length of vectors, another important operation is the scalar1 product

1 Note that this is called the scalar product because the result is a scalar, not because a scalar is
involved in the multiplication.
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1.1 Vector Basics 5

(also called the “dot product”) of two vectors, usually written as ( �A, �B) or �A◦ �B.

The scalar product is given by

( �A, �B) = �A ◦ �B = | �A|| �B| cos θ , (1.5)

in which θ is the angle between �A and �B. In Cartesian coordinates, the dot

product may be found by multiplying corresponding components and summing

the results:

( �A, �B) = �A ◦ �B = AxBx + AyBy + AzBz. (1.6)

Notice that if vectors �A and �B are parallel, then the dot product is

�A ◦ �B = | �A|| �B| cos
(

0◦
)

= | �A|| �B|, (1.7)

since cos(0◦) = 1. Alternatively, if �A and �B are perpendicular, then the value

of the dot product is zero:

�A ◦ �B = | �A|| �B| cos
(

90◦
)

= 0, (1.8)

since cos(90◦) = 0.

The dot product of a vector with itself gives the square of the magnitude of

the vector:

�A ◦ �A = | �A|| �A| cos
(

0◦
)

= | �A|2. (1.9)

A generalized version of the scalar product called the “inner product” is

extremely useful in quantum mechanics, so it’s worth a bit of your time to

think about what happens when you perform an operation such as �A ◦ �B. As

you can see in Fig. 1.3a, the term | �B| cos θ is the projection of vector �B onto

the direction of vector �A, so the dot product gives an indication of “how much”

of �B lies along the direction of �A.2 Alternatively, you can isolate the | �A| cos θ

portion of the dot product �A ◦ �B = | �A|| �B| cos θ , which is the projection of �A

onto the direction of �B, as shown in Fig. 1.3b. From this perspective, the dot

product indicates “how much” of vector �A lies along the direction of �B. Either

way, the dot product provides a measure of how much one vector “contributes”

to the direction of another.

To make this concept more specific, consider what you get by dividing the

dot product by the magnitude of �A times the magnitude of �B:

2 If you find the phrase “lies along” troubling (since vector �A and vector �B lie in different
directions), perhaps it will help to imagine a tiny traveler walking from the start to the end of

vector �B, and asking “In walking along vector �B, how much does a traveler advance in the

direction of vector �A?”
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6 1 Vectors and Functions
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Figure 1.3 (a) The projection of vector �B onto the direction of vector �A and (b)

the projection of vector �A onto the direction of vector �B.

�A ◦ �B

| �A|| �B|
=

| �A|| �B| cos θ

| �A|| �B|
= cos θ , (1.10)

which ranges from one to zero as the angle between the vectors increases from

0◦ to 90◦. So if two vectors are parallel, each contributes its entire length

to the direction of the other, but if they’re perpendicular, neither makes any

contribution to the direction of the other.

This understanding of the dot product makes it easy to comprehend the

results of taking the dot product between pairs of the Cartesian unit vectors:

Each of these unit vectors lies

entirely along itself

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ı̂ ◦ ı̂ = |ı̂||ı̂| cos 0◦ = (1)(1)(1) = 1

ĵ ◦ ĵ = |ĵ ||ĵ | cos 0◦ = (1)(1)(1) = 1

k̂ ◦ k̂ = |k̂||k̂| cos 0◦ = (1)(1)(1) = 1

No part of these unit vectors

lies along any other

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ı̂ ◦ ĵ = |ı̂||ĵ | cos 90◦ = (1)(1)(0) = 0

ı̂ ◦ k̂ = |ı̂||k̂| cos 90◦ = (1)(1)(0) = 0

ĵ ◦ k̂ = |ĵ ||k̂| cos 90◦ = (1)(1)(0) = 0

The Cartesian unit vectors are called “orthonormal” because they’re orthog-

onal (each is perpendicular to the others) as well as normalized (each has
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1.1 Vector Basics 7

magnitude of one). They’re also called a “complete set” because any vector in

three-dimensional Cartesian space can be made up of a weighted combination

of these three basis vectors.

Here’s a very useful trick: orthonormal basis vectors make it easy to use

the dot product to determine the components of a vector. For a vector �A, the

components Ax, Ay, and Az can be found by dotting the basis vectors ı̂, ĵ , and

k̂ into �A:

Ax = ı̂ ◦ �A = ı̂ ◦ (Ax ı̂ + Ayĵ + Azk̂)

= Ax(ı̂ ◦ ı̂) + Ay(ı̂ ◦ ĵ ) + Az(ı̂ ◦ k̂)

= Ax(1) + Ay(0) + Az(0) = Ax.

Likewise for Ay

Ay = ĵ ◦ �A = ĵ ◦ (Ax ı̂ + Ayĵ + Azk̂)

= Ax(ĵ ◦ ı̂) + Ay(ĵ ◦ ĵ ) + Az(ĵ ◦ k̂)

= Ax(0) + Ay(1) + Az(0) = Ay.

And for Az

Az = k̂ ◦ �A = k̂ ◦ (Ax ı̂ + Ayĵ + Azk̂)

= Ax(k̂ ◦ ı̂) + Ay(k̂ ◦ ĵ ) + Az(k̂ ◦ k̂)

= Ax(0) + Ay(0) + Az(1) = Az.

This technique of digging out the components of a vector using the dot product

and basis vectors is extremely valuable in quantum mechanics.

Main Ideas of This Section

Vectors are mathematical representations of quantities that may be

expanded as a series of components, each of which pertains to a directional

indicator called a basis vector. A vector may be added to another vector

to produce a new vector, and a vector may be multiplied by a scalar or by

another vector. The dot or scalar product between two vectors produces a

scalar result proportional to the projection of one of the vectors along the

direction of the other. The components of a vector in an orthonormal basis

system may be found by dotting each basis vector into the vector.
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8 1 Vectors and Functions

Relevance to Quantum Mechanics

Just as a vector can be expressed as a weighted combination of basis vectors,

a quantum wavefunction can be expressed as a weighted combination

of basis wavefunctions. A generalized version of the dot product called

the inner product can be used to calculate how much each component

wavefunction contributes to the sum, and this determines the probability

of various measurement outcomes.

1.2 Dirac Notation

Before making the connection between vectors and quantum wavefunctions,

it’s important for you to realize that vector components such as Ax, Ay, and Az

have meaning only when tied to a set of basis vectors (Ax to ı̂, Ay to ĵ , and

Az to k̂). If you had chosen to represent vector �A using a different set of basis

vectors (for example, by rotating the x-, y-, and z-axes and using basis vectors

aligned with the rotated axes), you could have written the same vector �A as

�A = Ax′ ı̂′ + Ay′ ĵ ′ + Az′ k̂′,

in which the rotated axes are designated x′, y′, and z′, and the basis vectors

pointing along those axes are ı̂′, ĵ ′, and k̂′.

When you expand a vector such as �A in terms of different basis vectors, the

vector components of the vector may change, but the new components and the

new basis vectors add up to give the same vector �A. You may even choose to

use a non-Cartesian set of basis vectors such as the spherical basis vectors r̂,

θ̂ , and φ̂; expanding vector �A in this basis looks like this:

�A = Ar r̂ + Aθ θ̂ + Aφ φ̂.

Once again, different components, different basis vectors, but the combination

of components and basis vectors gives the same vector �A.

What’s the advantage of using one set of basis vectors or another? Depend-

ing on the geometry of the situation, it may be simpler to represent or

manipulate vectors in a particular basis. But once you’ve specified a basis,

a vector may be represented simply by writing its components in that basis as

an ordered set of numbers.

For example, you could choose to represent a three-dimensional vector by

writing its components into a single-column matrix
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1.2 Dirac Notation 9

�A =

⎛

⎝

Ax

Ay

Az

⎞

⎠ ,

as long as you remember that vectors may be represented in this way only

when the basis system has been specified.

Since they’re vectors, the Cartesian basis vectors (ı̂, ĵ , and k̂) themselves

can be written as column vectors. To do so, it’s necessary to ask “In what

basis?” Students sometimes find this a strange question, since we’re talking

about representing a basis vector, so isn’t the basis obvious?

The answer is that it’s perfectly possible to expand any vector, including a

basis vector, using whichever basis system you choose. But some choices will

lead to simpler representation than others, as you can see by representing ı̂, ĵ ,

and k̂ using their own Cartesian basis system:

ı̂ = 1ı̂ + 0ĵ + 0k̂ =

⎛

⎝

1

0

0

⎞

⎠ ĵ = 0ı̂ + 1ĵ + 0k̂ =

⎛

⎝

0

1

0

⎞

⎠

and

k̂ = 0ı̂ + 0ĵ + 1k̂ =

⎛

⎝

0

0

1

⎞

⎠ .

Such a basis system, in which each basis vector has only one nonzero

component, and the value of that component is +1, is called the “standard”

or “natural” basis.

Here’s what it looks like if you express the Cartesian basis vectors (ı̂, ĵ , k̂)

using the basis vectors (r̂, θ̂ , φ̂) of the spherical coordinate system

ı̂ = sin θ cos φr̂ + cos θ cos φθ̂ − sin φφ̂

ĵ = sin θ sin φr̂ + cos θ sin φθ̂ + cos φφ̂

k̂ = cos θ r̂ − sin θ θ̂ .

So the column-vector representation of ı̂, ĵ , k̂ in the spherical basis system is

ı̂ =

⎛

⎝

sin θ cos φ

cos θ cos φ

− sin φ

⎞

⎠ ĵ =

⎛

⎝

sin θ sin φ

cos θ sin φ

cos φ

⎞

⎠ k̂ =

⎛

⎝

cos θ

− sin θ

0

⎞

⎠ .
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10 1 Vectors and Functions

The bottom line is this: whenever you see a vector represented as a column of

components, it’s essential that you understand the basis system to which those

components pertain.

Relevance to Quantum Mechanics

Like vectors, quantum wavefunctions can be expressed as a series of

components, but those components have meaning only when you’ve defined

the basis functions to which they pertain.

In quantum mechanics, you’re likely to encounter entities called “ket

vectors” or simply “kets,” written with a vertical bar on the left and angled

bracket on the right, such as |A〉. The ket |A〉 can be expanded in the same way

as vector �A:

|A〉 = Ax |i〉 + Ay | j〉 + Az |k〉 =

⎛

⎝

Ax

Ay

Az

⎞

⎠ = Ax î + Ay ĵ + Azk̂ = �A. (1.11)

So if kets are just a different way of representing vectors, why call them

“kets” and write them as column vectors? This notation was developed by

the British physicist Paul Dirac in 1939, while he was working with a

generalized version of the dot product called the inner product, written as

〈A|B〉. In this context, “generalized” means “not restricted to real vectors

in three-dimensional physical space,” so the inner product can be used with

higher-dimensional abstract vectors with complex components, as you’ll see

in Sections 1.3 and 1.4. Dirac realized that the inner product bracket 〈A|B〉

could be conceptually divided into two pieces, a left half (which he called a

“bra”) and a right half (which he called a “ket”). In conventional notation, an

inner product between vectors �A and �B might be written as �A ◦ �B or ( �A, �B), but

in Dirac notation the inner product is written as

Inner product of |A〉 and |B〉 = 〈A| times |B〉 = 〈A|B〉 . (1.12)

Notice that in forming the bracket 〈A|B〉 as the multiplication of bra 〈A| by ket

|B〉, the right vertical bar of 〈A| and the left vertical bar of |B〉 are combined

into a single vertical bar.

To calculate the inner product 〈A|B〉, begin by representing vector �A as a ket:

|A〉 =

⎛

⎝

Ax

Ay

Az

⎞

⎠ (1.13)
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