Ecotoxicology offers a comprehensive overview of the science underpinning the recognition and management of environmental contamination. It describes the toxicology of environmental contaminants, the methods used for assessing their toxicity and ecological impacts, and approaches employed to mitigate pollution and ecological health risks globally. Chapters cover the latest advances in research, including genomics, natural toxins, endocrine disruption and the toxicology of radioactive substances. The second half of the book focuses on applications, such as cradle-to-grave effects of selected industries, legal and economic approaches to environmental regulation, ecological risk assessment, and contaminated site remediation. With short capsules written by invited experts, numerous case studies from around the world and further reading lists online, this textbook is designed for advanced undergraduate and graduate one-semester courses. It is also a valuable reference for graduate students and professionals. Online resources for instructors and students are also available.

Peter G. C. Campbell is Emeritus Professor at the Institut national de la recherche scientifique (INRS) in Québec City, Canada, which he joined in 1968 after completing his PhD. Over the course of his career he has researched elements of analytical chemistry, geochemistry and ecotoxicology, with an emphasis on metal speciation and bioavailability. He co-directed the Metals in the Environment Research Network from 1998–2009 and held a Canada Research Chair in Metal Ecotoxicology from 2002 until his retirement in 2015. He was elected to the Academy of Sciences of the Royal Society of Canada in 2002 and received the SETAC Founders’ Award in 2019.

Peter V. Hodson is Professor Emeritus at Queen’s University in Kingston, Ontario, Canada. His recent research includes the toxicity of crude oil and oil dispersants to fish embryos and the role of chemicals in the decline of the American eel in Lake Ontario. He has authored numerous peer-reviewed papers, books and technical reports related to the toxicity of chemicals to fish and contamination of the Great Lakes and rivers of Ontario, Quebec, and Alberta. He was President of the Society of Environmental Toxicology and Chemistry (SETAC) (1994–1995) and a member of its Board of Directors and the Board of the SETAC World Council (from 2004 to 2007), serving as the Chair of the World Council Science Committee. He was Program Chair of SETAC’s 10th Annual Meeting in Toronto in 1989.

Pamela M. Welbourn is currently an Adjunct Professor in the School of Environmental Studies at Queen’s University, Canada. She was on the faculty at the University of Toronto from 1970 to 1990, where she was Director of the Institute for Environmental Studies from 1984 to 1989. Welbourn has published numerous peer-reviewed papers and technical reports, and co-authored the textbook *Environmental Toxicology* (Cambridge University Press, 2002). She has consulted for the private and public sector and also for non-governmental organisations. She holds two teaching awards and currently gives guest lectures and public lectures on ecotoxicology.

David A. Wright is Emeritus Professor of Environmental Toxicology at the University of Maryland, Center for Environmental Science, USA. While advisor to fifteen MS and PhD students, he has conducted numerous studies on the effect of inorganic and organic contaminants on aquatic organisms. He has published numerous articles, books and technical reports on a variety of toxicological and maritime issues such as invasive species, and has co-authored the textbook *Environmental Toxicology* (Cambridge University Press, 2002). He is a Fellow of the Institute for Engineering Science & Technology (IMarEST) and was Chief Scientist at the 2010 Gulf of Mexico Deepwater Horizon spill.
Ecotoxicology

Principal authors
Peter G. C. Campbell
Institut national de la recherche scientifique (INRS), QC, Canada

Peter V. Hodson
Queen's University, Kingston, ON, Canada

Pamela M. Welbourn
Queen's University, Kingston, ON, Canada

David A. Wright
University of Maryland, Center for Environmental Science, Cambridge, MD, USA

Contributing authors
Valérie S. Langlois
Institut national de la recherche scientifique (INRS), QC, Canada

Christopher J. Martyniuk
University of Florida, Gainesville, FL, USA

Christopher D. Metcalfe
Trent University, Peterborough, ON, Canada

Louise M. Winn
Queen's University, Kingston, ON, Canada
Guest capsule contributors

Capsule 6.1 Metal Effects on Fish Olfaction
Gregory G. Pyle
University of Lethbridge, AB, Canada

Capsule 7.1 Mobility, Bioavailability and Remediation of PFAS Compounds in Soils
Michael J. McLaughlin
University of Adelaide, SA, Australia

Capsule 10.1 Radiological Protection of the Environment
Nicholas A. Beresford
Centre for Ecology & Hydrology, Lancaster, UK
David Copplestone
University of Stirling, Stirling, UK

Capsule 11.1 Mercury and Silver: A History of Unexpected Environmental Consequences
Saul Guerrero
Australian National University, Canberra, ACT, Australia

Capsule 12.1 The Sudbury Soils Study: An Area-wide Ecological Risk Assessment
Christopher D. Wren
LRG Environmental, Markdale, ON, Canada
Glen Watson
Vale Canada Limited, Vale, ON, Canada
Marc Butler
Glencore Sudbury Nickel Operations, ON, Canada

Capsule 12.2 Legislation for Chemical Management – Traditional Environmental Knowledge in the Regulation of Chemical Contaminants
F. Henry Lickers
International Joint Commission, Canada–United States

Capsule 13.1 The Enduring Legacy of Point-source Mercury Pollution
John W. M. Rudd
Rudd & Kelly Research, Salt Spring Island, BC, Canada
Carol A. Kelly
Rudd & Kelly Research, Salt Spring Island, BC, Canada

Capsule 13.2 Bioremediation of Oil Spills
Charles W. Greer
National Research Council Canada, Montreal, QC

Capsule 14.1 Lithium – A Critical Mineral Element: Sources, Extraction and Ecotoxicology
Heather Jamieson
Queen’s University, Kingston, ON, Canada

With additional guest contributions from:

Corinna Dally-Starna
Queen’s University, Kingston, ON, Canada
Case Study 14.1

Brendan Hickie
Trent University, Peterborough, ON, Canada
Contribution to Chapter 4

Adrian Pang
Queen’s University, Kingston, ON, Canada
Case Study 13.2

Doug Spry
Environment and Climate Change Canada, Gatineau, QC, Canada
Contribution to Chapter 12
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>xv</td>
</tr>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xix</td>
</tr>
<tr>
<td>PART I APPROACHES AND METHODS</td>
<td>1</td>
</tr>
<tr>
<td>1 The History and Emergence of Ecotoxicology as a Science</td>
<td>3</td>
</tr>
<tr>
<td>Pamela M. Welbourn and Peter V. Hodson</td>
<td></td>
</tr>
<tr>
<td>Learning Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.1 The Science of Ecotoxicology</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Historical Landmarks in the Development of Ecotoxicology</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1 Silent Spring and Pesticides</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2 Mercury</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3 Acidification</td>
<td>10</td>
</tr>
<tr>
<td>1.2.4 Industrial Waste Disposal and Brownfields</td>
<td>11</td>
</tr>
<tr>
<td>1.2.5 Oil Spills</td>
<td>12</td>
</tr>
<tr>
<td>1.2.6 Our Stolen Future and Endocrine Disruptors</td>
<td>12</td>
</tr>
<tr>
<td>1.3 The Emergence of the Science of Ecotoxicology</td>
<td>13</td>
</tr>
<tr>
<td>1.4 The Turning Point and Formal Regulation of Toxic Substances</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Solutions That May Lead to New Problems</td>
<td>16</td>
</tr>
<tr>
<td>1.6 Conclusions</td>
<td>17</td>
</tr>
<tr>
<td>Summary</td>
<td>18</td>
</tr>
<tr>
<td>Review Questions and Exercises</td>
<td>18</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>19</td>
</tr>
<tr>
<td>References</td>
<td>19</td>
</tr>
<tr>
<td>2 Measuring Toxicity</td>
<td>23</td>
</tr>
<tr>
<td>Peter V. Hodson and David A. Wright</td>
<td></td>
</tr>
<tr>
<td>Learning Objectives</td>
<td>23</td>
</tr>
<tr>
<td>2.1 The Basics of Environmental Toxicology</td>
<td>23</td>
</tr>
<tr>
<td>2.1.1 Concepts and Definitions</td>
<td>24</td>
</tr>
<tr>
<td>2.1.1.1 What Is Toxicity?</td>
<td>24</td>
</tr>
<tr>
<td>2.1.1.2 Chemical Structure vs Toxicity</td>
<td>24</td>
</tr>
<tr>
<td>2.1.3 Nutrients vs Toxicants</td>
<td>25</td>
</tr>
<tr>
<td>2.1.4 Expressions of Toxicity</td>
<td>26</td>
</tr>
<tr>
<td>2.2 Designing a Toxicity Test: What Is the Question?</td>
<td>28</td>
</tr>
<tr>
<td>2.2.1 Test Organisms</td>
<td>29</td>
</tr>
<tr>
<td>2.2.1.1 Laboratory Cultures of Test Organisms</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1.2 Life Stages Tested and Responses Measured</td>
<td>31</td>
</tr>
<tr>
<td>2.2.2 Test Media and Routes of Exposure</td>
<td>32</td>
</tr>
<tr>
<td>2.2.3 Exposure Gradients</td>
<td>33</td>
</tr>
<tr>
<td>2.2.4 Exposure Time</td>
<td>33</td>
</tr>
<tr>
<td>2.2.5 Control Treatments</td>
<td>36</td>
</tr>
<tr>
<td>2.2.6 Other Test Conditions That Affect Measured Toxicity</td>
<td>36</td>
</tr>
<tr>
<td>2.2.7 Characterizing Test Conditions and Chemical Exposures</td>
<td>38</td>
</tr>
<tr>
<td>2.2.8 Complexities in Toxicity Testing</td>
<td>39</td>
</tr>
<tr>
<td>2.2.8.1 Toxicity Tests for Sparingly Soluble Compounds</td>
<td>39</td>
</tr>
<tr>
<td>2.2.8.2 Sediment and Soil Toxicity Tests</td>
<td>39</td>
</tr>
<tr>
<td>2.2.8.3 Standard vs ‘Realistic’ Toxicity Tests</td>
<td>41</td>
</tr>
<tr>
<td>2.2.8.4 Surrogate Species for Routine Testing</td>
<td>41</td>
</tr>
<tr>
<td>2.3 Statistics for Toxicity Tests</td>
<td>42</td>
</tr>
<tr>
<td>2.3.1 Regression Analyses for Computing Toxicity</td>
<td>42</td>
</tr>
<tr>
<td>2.3.1.1 Data Types and Transformations</td>
<td>43</td>
</tr>
<tr>
<td>2.3.1.2 Control Data</td>
<td>44</td>
</tr>
<tr>
<td>2.3.2 Hypothesis Testing: Multiple Regression Analyses</td>
<td>44</td>
</tr>
<tr>
<td>2.3.3 Predictive Toxicology: Single Compounds</td>
<td>45</td>
</tr>
<tr>
<td>2.3.3.1 Acute to Chronic Ratios (ACRs)</td>
<td>46</td>
</tr>
<tr>
<td>2.3.3.2 Species Sensitivity Distributions (SSDs)</td>
<td>47</td>
</tr>
<tr>
<td>2.3.3.3 Quantitative Structure–Activity Relationships (QSARs)</td>
<td>47</td>
</tr>
<tr>
<td>2.3.4 Predictive Toxicology: Mixtures</td>
<td>48</td>
</tr>
<tr>
<td>2.3.4.1 Toxic Unit (TU) Model</td>
<td>48</td>
</tr>
<tr>
<td>2.3.4.2 Toxic Equivalent Factor (TEF) Model</td>
<td>49</td>
</tr>
<tr>
<td>2.3.4.3 Target Lipid Model</td>
<td>49</td>
</tr>
<tr>
<td>2.3.4.4 Metal Mixtures</td>
<td>50</td>
</tr>
<tr>
<td>2.3.4.5 Dissecting Complex Mixtures</td>
<td>51</td>
</tr>
<tr>
<td>2.3.5 Moving Away from Traditional Toxicity Tests</td>
<td>52</td>
</tr>
<tr>
<td>Summary</td>
<td>54</td>
</tr>
<tr>
<td>Review Questions and Exercises</td>
<td>54</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>55</td>
</tr>
<tr>
<td>References</td>
<td>56</td>
</tr>
</tbody>
</table>
Review Questions and Exercises 131
Abbreviations 131
References 132

5
Ecotoxicogenomics 139
Valérie S. Langlois and Christopher J. Martyniuk
Learning Objectives 139
5.1 Environmental ‘Omics’: A Role in Ecotoxicology Research 139
5.2 Ecotoxicology and Transcriptomics 141
5.2.1 Application of Ecotoxicogenomics 142
5.3 Ecotoxicology and Proteomics 144
5.4 Ecotoxicology and Metabolomics/ Lipidomics 146
5.5 Ecotoxicology and Epigenetics 147
5.6 Environmental DNA (eDNA) 149
5.7 Ecotoxicology and the Microbiome (Metagenomics) 149
5.8 Ecotoxicology and Bioinformatics 150
5.9 Omics and Adverse Outcome Pathways (AOPs) 152
5.10 Omics in Regulatory Toxicology 153
5.10.1 Computational Toxicology in Regulatory Toxicology 154
5.10.2 Environmental Omics in Regulatory Toxicology 157
5.10.3 Challenges and Considerations 157
5.11 Emerging Applications for Omics in Ecotoxicology 159
5.11.1 Genome-wide CRISPR Screens in Ecotoxicology 160
5.11.2 Multi-omics, Exposome and Exposomics in Ecotoxicology 161
Summary 161
Review Questions and Exercises 162
Abbreviations 162
References 163

PART II TOXICOLOGY OF INDIVIDUAL SUBSTANCES 169

6
Metals and Metalloids 171
Peter G. C. Campbell, Pamela M. Welbourn and Christopher D. Metcalfe
Learning Objectives 171
6.1 Introduction 171
6.2 Biogeochemistry of Metals and Metalloids 174
6.2.1 General Properties: Metal Speciation 174
6.2.2 Mobilization, Binding, Transport and Chemical Forms of Metals in the Environment 178
6.3 Biological Availability of Metals inAquatic and Terrestrial Systems 179
6.3.1 General Considerations 180
6.3.2 Aquatic Environments: Dissolved Metals 180
6.3.3 Aquatic Environments: Particulate Metals 184
6.3.4 Terrestrial Environments 185
6.3.5 Diet-borne Metals 186
6.4 Mechanisms of Metal Toxicity 187
6.4.1 Alteration of Enzyme Conformation 188
6.4.2 Displacement of Essential Cations 188
6.4.3 Oxidative Stress 189
6.4.4 Changes to Cellular Differentiation 190
6.4.5 Behavioural Effects 190
6.5 Metal Detoxification and Tolerance 195
6.5.1 Metal Speciation Within Cells 195
6.5.2 Determination of Subcellular Metal Partitioning 196
6.5.3 Links Among Changes in Metal Exposure, Changes in Metal Subcellular Distribution and the Onset of Deleterious Effects 197
6.5.3.1 Laboratory Observations 198
6.5.3.2 Field Observations 199
Case Study 6.1 Response of Native Freshwater Animals to Metals Derived from Base-metal Smelter Emissions 199
6.5.4 Metal Tolerance 202
6.5.4.1 Occurrence and Origin 202
6.5.4.2 Approaches 202
6.5.4.3 Taxonomic Distribution of Tolerance 203
6.5.4.4 Tolerance Mechanisms 203
6.5.4.5 Ecotoxicological Implications and Practical Applications 205
6.6 Organometals (Hg, Pb, Sn, As, Sb, Se) 206
6.7 Abiotic Factors Affecting Metal Toxicity 206
6.7.1 Temperature 206
6.7.2 pH 207
6.7.3 Hardness 208
6.7.4 Salinity 208
6.7.5 Dissolved Organic Matter 209
6.8 Metal-specific Sections 209
6.8.1 Mercury 210
6.8.1.1 Occurrence, Sources and Uses 210
6.8.1.2 Biogeochemistry 212
6.8.1.3 Mercury Methylation 214
6.8.1.4 Biogeochemical Cycle 215
6.8.1.5 Mercury Biomagnification 217
6.8.1.6 Environmental Factors Affecting Mercury Bioaccumulation 219
6.8.1.7 Mercury Bioaccumulation and Monitoring 221
6.8.1.8 Ecotoxicity 221

© in this web service Cambridge University Press & Assessment www.cambridge.org
7 Organic Compounds

Christopher D. Metcalfe, David A. Wright and Peter V. Hodson

Learning Objectives
7.1 Classes of Organic Compounds
7.2 Fate in the Environment

7.3 Uptake into Organisms and Bioaccumulation
7.4 Cellular Receptors
7.5 Metabolism
7.5.1 Phase I Reactions
7.5.2 Phase II Reactions
7.5.3 Phase III Reactions
7.5.4 Induction of Metabolism
7.6 Compounds of Particular Concern
7.6.1 Hydrocarbons: Sources, Applications and Concerns
7.6.1.1 Polycyclic Aromatic Compounds
7.6.1.2 Petroleum Hydrocarbons
7.7 Legacy Contaminants
7.7.1 Organochlorine Insecticides
7.7.2 Polychlorinated Dibenzo(dioxins and Dibenzofurans
7.7.3 Polychlorinated Biphenyls
7.8 Current Use Pesticides
7.8.1 Organophosphate Insecticides
7.8.2 Carbamate Insecticides
7.8.3 Pyrethroid Insecticides
7.8.4 Neonicotinoid Insecticides
7.8.5 Chlorophenoxy Herbicides
7.8.6 Bipyridilium Herbicides
7.8.7 Triazine Herbicides
7.8.8 Glyphosate Herbicide
7.8.9 Fungicides
7.9 Flame Retardants
7.10 Perfluoroalkyl Compounds
7.11 Plasticizers
7.12 Pharmaceutically Active Compounds
7.13 Toxicovigilance

8 Endocrine Disrupting Chemicals

Christopher D. Metcalfe, Christopher J. Martyniuk, Valérie S. Langlois and David A. Wright

Learning Objectives
8.1 Endocrine Disruption
8.2 The Endocrine System and Its Disruption
8.2.1 Neuroendocrine Control
8.2.1.1 The Hypothalamic–Pituitary Axis 330
8.2.1.2 Neuroendocrine Disruption 331
8.2.2 Gonadotropins 332
8.2.3 Steroid Hormones 333
8.2.4 Thyroid Hormones 333
8.3 Hormone Receptors 336
8.4 Modes of Action of EDCs 337
8.4.1 Agonists and Antagonists 337
8.4.2 Altered Biosynthesis of Hormones 337
8.4.3 Binding to Hormone Transport Proteins 338
8.4.4 Altered Hormone Receptor Levels and Gene Expression 338
8.5 Examples of EDCs 338
8.5.1 Xenobiotics in Wastewater as Sex Steroid Mimics 341
8.5.2 Phthalates as EDCs 342
8.5.3 Atrazine as an EDC 343
8.5.4 Flame Retardants as EDCs 343
8.5.5 Legacy Contaminants as EDCs 344
8.5.6 Organotins as EDCs 345
8.6 EDCs as a Human Health Concern 346
8.7 Conclusions 346

9 Natural Toxins 355

9.1 What Is a Toxin? 355
9.2 Evolutionary Perspective and Role of Natural Toxins 356
9.3 Toxins and Their Mode of Action 356
9.3.1 Toxins Produced by Harmful Algal Blooms 357
9.3.1.1 Domoic Acid 357
9.3.1.2 Saxitoxin 358
9.3.1.3 Brevotoxin 359
9.3.1.4 Okadaic Acid 360
9.3.1.5 Karlotoxin 360
9.3.1.6 Tetrodotoxin 361
9.3.1.7 Microcystins 361
9.3.1.8 Anatoxins 361
9.3.2 Toxins Produced by Vascular Plants 361
9.3.2.1 Naphthoquinones 362
9.3.2.2 Lectins 363
9.3.3 Toxins Produced by Microorganisms: Fungi and Bacteria 363
9.3.3.1 Anthrax Toxin 363
9.3.3.2 Microbial Methylation of Mercury 364
9.3.3.3 Fungal Toxins 364
9.3.4 Toxins Produced by Animals 365
9.3.4.1 Venoms 365
9.4 Defining the Ecological Advantage of Toxin Production 366
9.5 Applications of Natural Toxins 368
9.5.1 Pest-control Products 368
9.5.1.1 Bt insecticide 369
9.5.1.2 Quinones 370
9.5.2 Biological Warfare and Bioterrorism 370
9.6 Conclusions 370

10 Ionizing Radiation 379

10.1 Non-ionizing Versus Ionizing Radiation 379
10.2 Definitions 380
10.2.1 What Is Ionizing Radiation? 380
10.2.2 Units of Measurement 382
10.3 Sources of Ionizing Radiation 383
10.3.1 Background Ionizing Radiation 383
10.3.2 Manufactured Ionizing Radiation for Medical Use 385
10.3.3 Nuclear Weapons 385
10.3.4 Nuclear Power 386
10.3.4.1 Mining and Extraction 386
10.3.4.2 Enrichment, Conversion and Fuel Fabrication 386
10.3.4.3 In-core Fuel Management 386
10.3.4.4 Fuel Reprocessing 387
10.3.5 Nuclear Waste Management 387
10.3.5.1 Short-lived Intermediate and Low-level Waste 388
10.3.5.2 Long-lived Intermediate and High-level Waste 388
10.4 Case Studies 389
10.4.1 Case Study 10.1 The Chernobyl Accident 389
10.4.2 Case Study 10.2 Fukushima Daiichi Nuclear Power Plant 390
10.5 Effects of Ionizing Radiation at the Molecular and Cellular Levels 391
10.5.1 Cell Death 393
10.5.2 DNA Damage 393
10.5.3 Protein Damage 394
10.5.4 Lipid Damage 394
10.5.5 Epigenetic Effects 394
10.5.6 Effects on the Immune System 395
10.6 Risk Assessment of Ionizing Radiation 395
10.7 Ecological Effects of Radiation 398
Contents

Capsule 10.1 Radiological Protection of the Environment 399
(Nicholas A. Beresford and David Copplestone)

10.8 Conclusions 403
Summary 404
Review Questions and Exercises 404
Abbreviations 404
References 405

PART III COMPLEX ISSUES 409

11
Complex Issues, Multiple Stressors and Lessons Learned 411
Pamela M. Welbourn, Peter G. C. Campbell, Peter V. Hodson and Christopher D. Metcalfe

Learning Objectives 411

11.1 Acidification of Freshwater, Terrestrial and Marine Systems 411
11.1.1 Freshwater Acidification 412
11.1.1.1 Chemical Effects 412
11.1.1.2 Physical Changes 413
11.1.1.3 Biological Effects and Risks for Sensitive Aquatic Systems 413
11.1.2 The Effects of Acidification on Terrestrial Systems 414
11.1.3 Regulation of Acidic Emissions and Recovery of Aquatic and Terrestrial Systems 415
11.1.3.1 Abatement 416
11.1.3.2 Treatment 417
11.1.4 Acidification of Marine Systems: 'The Other CO2 Problem' 417
11.1.5 Lessons Learned 418

11.2 Metal Mining and Smelting 419
11.2.1 The Issue 419
Capsule 11.1 Mercury and Silver: A History of Unexpected Environmental Consequences 420
(Saul Guerrero)
11.2.2 Processes Involved in the Extraction and Purification of Metals 424
11.2.3 Substances of Concern 426
11.2.4 Ecotoxicological Impacts of Metal Mining and Smelting 427
11.2.4.1 Rivers 428
11.2.4.2 Lakes 430
11.2.4.3 Coastal Marine Environments 430
11.2.5 Lessons Learned 431
11.3 Engineered Nanomaterials 431
11.3.1 Routes of Exposure and Environmental Fate 433
11.3.2 How Do Engineered Nanomaterials Enter Living Organisms? 434
11.3.3 In Search of Nanotoxicity 435
11.3.4 Lessons Learned 437

Case Study 11.1 Whole-lake Addition of Nanosilver 438
11.4 Pulp and Paper Production 439
11.4.1 Evolution of Pulp and Paper 440
11.4.1.1 Environmental Issues 440
11.4.1.2 Making Paper from Wood 440
11.4.1.3 Power Dams: Pulp Mills Need Water 442
11.4.1.3 Oxygen Consuming and Toxic Wastes from Wood Pulpning 442
11.4.1.4 Toxic Chemicals from Pulp Bleaching 444
11.4.2 Lessons Learned 445
Summary 446
Review Questions and Exercises 447
Abbreviations 448
References 448

PART IV MANAGEMENT 455

12
Regulatory Toxicology and Ecological Risk Assessment 457
Peter V. Hodson, Pamela M. Welbourn and Peter G. C. Campbell

Learning Objectives 457

12.1 The Need for Chemical Management and Regulation 457
12.2 Legislation for Chemical Management 458
12.2.1 The Process of Regulation 459
12.2.1.1 Policy 459
12.2.1.2 Legislation 459
12.2.1.3 Regulations 459
12.2.1.4 Departmental Responsibilities and Options for Chemical Management 460
12.2.2 International Law and Multilateral Agreements 460
12.2.3 Regulatory Challenges and Disparities 461
12.2.3.1 Factors That Affect the Development and Implementation of Chemical Regulations 461
12.3 Applying Ecotoxicology to Support Chemical Management 462
12.3.1 Numerical Limits: Criteria, Objectives, Standards, Guidelines (contributed by Douglas J. Spry) 463
12.3.1.1 How Numerical Limits Are Developed 463
12.3.1.2 Numerical Limits for Soils, Sediments and Biological Tissue 464
12.3.1.3 Future of Numerical Limits 465
12.3.2 Ecological Risk Assessment (ERA) 465
12.3.2.1 The Methodology of Ecological Risk Assessment 465

© in this web service Cambridge University Press & Assessment
Contents

12.3.2.2 Problem Formulation 466
12.3.2.3 Analysis 467
12.3.2.4 Risk Characterization 467
12.3.2.5 Applications of ERA: Specific Chemicals 467
12.3.2.6 Handling Uncertainty: An Integral Part of ERA 468

12.3.3 Regulations for Individual Chemicals and Complex Mixtures in Environmental Media 469
12.3.4 Enforcement of Environmental Regulations 470
Capsule 12.1 The Sudbury Soils Study: An Area-wide Ecological Risk Assessment (Christopher D. Wren, Glen Watson and Marc Butler) 471
12.3.5 Environmental Surveillance and Monitoring Case Study 12.1 Monitoring Rivers to Assess the Adequacy of Pesticide Regulations 477
12.4 The Future of Environmental Regulation Capsule 12.2 Legislation for Chemical Management – Traditional Environmental Knowledge in the Regulation of Chemical Contaminants? (F. Henry Lickers) 478

Summary 482
Review Questions and Exercises 482
Abbreviations 483
References 484

13 Recovery of Contaminated Sites 487

Pamela M. Welbourn and Peter V. Hodson

Learning Objectives 487
13.1 Background 487
13.2 Component Disciplines and Goals 488
13.3 Definitions and Concepts 490
13.4 Triggers for Action Towards Recovery 490
13.5 Methods and Approaches for Recovery 491
13.6 Engineering
13.6.1 Removal and Off-site Disposal of Contaminated Material 492
13.6.2 On-site Remediation Case Study 13.1 Entombment 493
13.7 Monitored Natural Recovery (MNR)
13.7.1 Passive Recovery for Surface Water 494
13.7.2 Passive Recovery and Natural Attenuation for Sediments and Soils Capsule 13.1 The Enduring Legacy of Point-source Mercury Pollution (John W. M. Rudd and Carol A. Kelly) Case Study 13.2 Recovery of Saglek Bay, Labrador 496

13.8 Bioremediation
Capsule 13.2 Bioremediation of Oil Spills (Charles W. Greer) 503
13.9 Recolonization and Phytoremediation
13.9.1 Recolonization by Plants 507
13.9.2 Recolonization by Fish and Other Animals 508
13.9.3 Phytoremediation 509
13.10 Conclusions 510

Summary 511
Review Questions and Exercises 511
Abbreviations 512
References 512

14 Emerging Concerns and Future Visions 515

David A. Wright and Peter G. C. Campbell

Learning Objectives 515
14.1 Climate Change and Its Role in Ecotoxicology
14.1.1 Interactions Between Climate Change and Ecotoxicology 515
14.1.1.1 Ecotoxicological Effects of Climate Change on Individual Species 517
14.1.1.2 Interspecific Effects of Climate Change on Ecotoxicology 518
14.1.2 Regional Considerations 520
14.1.3 Future Considerations 522

14.2 Microplastics and Nanoplastics 522
14.2.1 Toxicology of Microplastics
14.2.1.1 Adverse Physical Effects Through Tissue Damage and Inhibition of Movement 524
14.2.1.2 Cellular Invasion by Small Particles (Nanospecific Effect) 525
14.2.1.3 Toxicity of Chemical Constituents of Microplastics 525
14.2.1.4 Toxicity of Adsorbed Chemicals 525
14.2.2 Future Considerations 526
14.2.2.1 Establishing Cause and Effect 526
14.2.2.2 Mitigation 526

14.3 Emerging Inorganic Contaminants 528
14.3.1 Trends in Mining Activities 528
14.3.2 Trends in Metal Use Capsule 14.1 Lithium – A Critical Mineral Element: Sources, Extraction and Ecotoxicology (Heather Jamieson) 531
14.3.3 Future Considerations 534
Case Study 14.1 Deep-sea Mining 534

14.4 Emerging Concerns about Organic Contaminants 539
14.4.1 Monitoring 539
14.4.2 Non-targeted Screening 540
14.4.3 Toxicity Evaluation 541
14.4.4 Predictive Toxicology 542
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4.5 Applications of Predictive Toxicology in Ecological Risk Assessment</td>
<td>543</td>
</tr>
<tr>
<td>14.4.6 Future Considerations</td>
<td>544</td>
</tr>
<tr>
<td>Summary</td>
<td>544</td>
</tr>
<tr>
<td>Review Questions and Exercises</td>
<td>545</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>546</td>
</tr>
<tr>
<td>References</td>
<td>547</td>
</tr>
<tr>
<td>Epilogue: A Final Perspective</td>
<td>551</td>
</tr>
<tr>
<td>Updating Ecotoxicology</td>
<td>551</td>
</tr>
<tr>
<td>Ecological Risk Assessments; Environmental Decision-making and Indigenous Rights</td>
<td>551</td>
</tr>
<tr>
<td>Reliance on Environmental Modelling in Evaluating New Chemicals</td>
<td>552</td>
</tr>
<tr>
<td>Interactions Between Ecotoxicology and Human-induced Environmental Changes</td>
<td>552</td>
</tr>
<tr>
<td>Looking to the Future</td>
<td>553</td>
</tr>
<tr>
<td>Index</td>
<td>555</td>
</tr>
</tbody>
</table>
Almost 20 years ago, we published *Environmental Toxicology*. That book drew on the previous quarter-century, which had seen the gestation and adolescence of the environmental movement, and emphasized the emerging science of environmental toxicology. Students of today will have a different perspective from ours at the end of the twentieth century. Nevertheless, the current ecotoxicology text has been conceived as a follow-up. As a product of the subsequent 20 years of rapidly advancing research, technological progress, scholarly and popular writing, and media communications, it is in no sense a second edition. It is a new book, but it is tempting to review and reflect on the way that we saw the whole topic of toxic substances in the environment at the turn of the century. In our concluding chapter in 2002, we wrote:

At the beginning of the twenty-first century, there is a clear need to reformulate our thinking about the relationship between society and nature. All the preceding viewpoints were initially conceived without any clear evidence of widespread environmental pollution. Well-publicised instances of major contamination events and recent emphases on adverse effects at the population, community, and transboundary ecosystem levels now indicate the pervasiveness of problems. While science and technology have more sophisticated tools than ever before to identify and remediate environmental contamination, global problems will require global solutions and the political will to drive them. Such political decisions can only be made in the light of informed public opinion. This will increasingly involve scientists in the role of communicators and the engagement of politicians, economists, social scientists and philosophers in providing a balanced, realistic framework for ecosystem management.

How much has changed?

Pamela M. Welbourn and David A. Wright
PREFACE

Ecotoxicology is the study of the effects of toxic chemicals on biological organisms, especially at the population, community and ecosystem levels. It falls under the umbrella of environmental science and represents one of the aspects of environmental studies, along with the conservation of species, habitats and ecosystems, the protection of endangered species, and various levels of management for water, soil, wildlife and fisheries.

As is the case for other branches of environmental science, in ecotoxicology, there are reciprocal relationships among scientific investigations and social problems. Although this textbook focuses on the scientific and technological features of ecotoxicology (i.e., the things that we can measure), we think it is important to offer some historical background concerning the social context in which the science has developed. We describe the increasing public awareness and concern about toxic chemicals, and discuss the role that environmental nongovernmental actions have played in the development of ecotoxicology. For example, the role of endocrine disrupting chemicals was brought to public attention by the publication of Our Stolen Future in 1996 (co-written by Theo Colborn). Research on endocrine disrupting chemicals now constitutes a very significant domain in ecotoxicology.

In choosing the title ‘Ecotoxicology’, we aim to emphasize the ecosystem and its components at all levels of organization, and – to some extent – downplay the effects of toxicants on humans (often referred to as environmental toxicology). Nevertheless, we acknowledge that on many occasions, studies in environmental toxicology have led to the discovery of unexpected effects on ecosystems. For example, the food chain transfer and magnification of methylmercury, first recognized as causing disease in human populations in the late 1950s, were shown to have similar effects on top-level consumers in the animal kingdom.

Our textbook aims to provide a clear understanding of the broad scope of the discipline of ecotoxicology, informed by the latest scientific analysis and thinking. Some of the key features are:

- A unique blend of the chemistry, the biology and the regulatory aspects of ecotoxicology.
- The inclusion of chapters on endocrine disruption and ecotoxicogenomics, and considerations of how the recent findings in the field of genomics are beginning to provide tools that may assist our understanding of how chemicals can impact on ecosystem health.
- Consideration of novel contaminants such as engineered nanomaterials, polyfluoroalkyl substances (PFAS) and technology-critical elements (TCEs).
- The coverage of a range of countries in the discussion of regulatory toxicology, including the European Union, the USA, Australia, Canada and New Zealand, as well as international agreements.
- Up-to-date case studies and capsules throughout the text, some written by guest authors, to engage students and provoke interest in topics that touch their daily lives.
- Review questions at the end of each chapter to test the students’ knowledge.
- Online resources for instructors (at www.cambridge.org/ecotoxicology), which include solutions to student questions and problems. Online resources for students include the glossary of all the key terms highlighted in brown within the book and additional reading lists.
- The presentation of future visions, emerging concerns, novel contaminants and new technical approaches to understand and mitigate pollution and ecological health risks globally, which can be debated in targeted student discussion sessions or seminars.

This book has been designed for advanced undergraduate and graduate students taking courses on ecotoxicology, environmental toxicology and environmental pollution. It assumes knowledge of some fundamental and widely accepted concepts and biological processes. Students should have some background in basic natural sciences,
Preface

chemistry, biochemistry and biology. Professional consultants and practitioners may also find this a useful guide in specific areas.

The book was planned with a one-semester senior undergraduate course in mind, but it is also appropriate for graduate students who need to expand their background in ecotoxicology. In designing a particular course, instructors will be able to choose the chapters or chapter sections that fit with the course objectives, knowing that there are frequent cross-references among the chapters that will help the students to make the necessary connections. With few exceptions, the references cited date from 2000 or later. A few earlier references have been included, because we judged these to be seminal.

Book Organization

Throughout, this textbook provides more than a catalogue of toxic chemicals and their effects. It links ecotoxicology to the basic sciences of biology and chemistry that explain why some chemicals are more bioavailable and toxic than others and how chemicals interact with life at the molecular and cellular levels. It links these fundamental interactions to subsequent effects at higher levels of organization, from whole-organism performance to ecological change, with implications for the provision of ecological services such as natural resources.

Within Part I, ‘Approaches and Methods’, Chapter 1 discusses the history and evolution of this originally hybrid science and provides an overview of the structure of the whole book. Chapters 2, 3, 4 and 5 deal with the ‘tools of the trade’, some well-established (Chapter 2), some rapidly emerging (Chapter 5). In a number of places in the text, including the Epilogue, we refer to the challenges and pitfalls of relating experimental (lab-based) studies to the real world. We include methods and approaches for determining how potentially toxic substances can affect living organism at all levels of organization, from the gene to the whole ecosystem, and how these effects can be quantified. In the course of so doing, recent research and technical advances are included, along with selected examples to illustrate the major issues and current approaches to the subject. Recognizing the contribution of technology to the progress of the science of ecotoxicology, significant technological advances are highlighted and evaluated. As such, Chapter 5 is a state-of-the-art overview of the developing science of ‘Oomics’, which underpins the development of Adverse Outcome Pathways, linking effects at the molecular level to successively higher levels of organization, including ecosystems.

Part II, ‘Toxicology of Individual Substances’, addresses categories of chemicals in classes, with their sources, chemistry and modes of action. This includes Metals and Metalloids (Chapter 6), Organic Compounds (Chapter 7), Endocrine Disrupting Chemicals (Chapter 8), Natural Toxins (Chapter 9) and Ionizing Radiation (Chapter 10). The inclusion of natural toxins is a departure from most ecotoxicology textbooks, but natural plant, animal and microbial metabolites constitute some of the most toxic substances known. Further, there is increasing interest in the use of natural products in pest control and medicine.

Part III, ‘Complex Issues’, deals with real-world complex issues, covered in Chapter 11. These issues were chosen to illustrate the effects of multiple stressors, the potential implications of ‘nanotoxicity’, interactions among toxicants and cradle-to-grave effects of industrial processes such as metal extraction/refining and pulp and paper processing. In Part IV, ‘Management’, Chapter 12 deals with environmental regulation and risk assessment, and Chapter 13 with recovery of ecosystems damaged by chemical contamination. Finally, Chapter 14 looks at emerging issues and anticipated future developments in ecotoxicology. Perhaps you, the readers of this volume, will contribute to an updated edition in another 20 years!
ACKNOWLEDGEMENTS

Many people have contributed to the publication of this textbook and we would like to express our gratitude here for their help. Some of these contributors will be evident to our readers, notably the authors of our capsules and several case studies (see page iv). For more subtle help, for example in chasing down and suggesting relevant references, we thank Charles Driscoll (Syracuse University), Cynthia Gilmour (Smithsonian Environmental Research Center), Bill Keller (Ontario Ministry of the Environment), Gerrit Schüürmann (Helmholtz Centre for Environmental Research) and Shaun Watmough (Trent University). In several cases, data were kindly made available by external colleagues (Matthew Graham, Environment and Climate Change Canada; Thomas Graedel, Yale University).

Various individual chapters benefited from critical review by obliging colleagues (Graeme Batley, CSIRO Land and Water; Claude Fortin and Emilien Pelletier, Université du Québec; Don Mackay, Trent University; Kevin Wilkinson, Université de Montréal). Philip Rainbow, also a CUP author, provided helpful advice about book publishing. Maame Adai, a Queen’s University graduate student, carried out a literature search for the Chapter 6 section on Mercury. Similarly, Jenny Moe, also a Queen’s University graduate student, searched the literature for examples of significant case studies to be included in Chapter 1.

We also received essential technical support from Queen’s University (Morag Coyne, Library) and the Université du Québec, INRS (Jean-Daniel Bourgault, Service de documentation). Colin Kahn (Queen’s University, School of Environment Studies) provided invaluable help in negotiating the ever-changing Internet security requirements. Robert Loney (Trent University) made innumerable contributions to the graphics in our book, not only in converting our rough sketches into publishable figures, but also in patiently providing critical advice about image resolution and fonts. Caroline Doose (an INRS graduate student) provided the careful art work for the biotic ligand model figure in Chapter 6. Anik Giguère (a former INRS graduate student) and Nastassia Urien (a former INRS postdoctoral fellow) also contributed to the figures in Chapter 6. We also thank Myriam Castonguay (coordinator of the Intersectoral Centre for Endocrine Disruptor Analysis, ICEDA) for her graphical skills in assembling figures for Chapter 5. Many of the chemical structures illustrated in the book were obtained from ChemSpider, a service provided by the Royal Society of Chemistry. The original structures were then manipulated with ACD/ChemSketch, version 2019.1.3, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com.

As this book progressed from conception to completion, we have profited from the sage contributions of CUP staff, notably Emma Kiddle, Ilaria Tassistro and Rachel Norridge. In its final stages, the book also benefited from the meticulous analysis of our draft chapters by Lindsay Nightingale in her role as the copy editor.

Finally, we would be seriously remiss if we did not acknowledge the essential support of our marital partners, who had to deal not only with the COVID-19 pandemic but also our preoccupied spouses!

The part and chapter opening images were supplied courtesy of: Sean Justice / The Image Bank / Getty Images (page xx); Science History Institute (page 2); xPACIFICA / Stone / Getty Images (page 22); PASIEKA / Science Photo Library / Getty Images (page 60); Stuart Westmorland / Corbis Documentary / Getty Images (page 98); Andriy Onufriyenko / Moment / Getty Images (page 138); Michel Joffres / 500px / Getty Images (page 168); Robbie Goodall / Moment / Getty Images (page 170); Keenpress / Photodisc / Getty Images (page 294); MedicalRF.com / Getty Images (page 326); Péter Gulyás / EyeEm / Getty Images (page 354); yangna / E+ / Getty Images (page 378); shaunil / E+ / Getty Images (page 408); aydinmulu / E+ / Getty Images (page 410); the_burtons / Moment / Getty Images (page 454); Robert Brook / Science Photo Library / Getty Images (page 456); Romodo Tavani / iStock / Getty Images Plus (page 486); Paul Souders / Stone / Getty Images (page 518).