
Cambridge University Press & Assessment
978-1-108-83376-9 — Introduction to Choreographies
Fabrizio Montesi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction
Alice, Bob, Concurrency, and Distribution

The Importance of Protocols

Two aspects have become pervasive in modern computing: concurrency, the performance of mul-

tiple tasks at a time; and distribution, the usage of components located on different communi-

cating devices. Even mobile phones and tiny single-board computers feature multiple processing

units of different kinds, with purposes that go from generic computing to more specialised ones

such as artificial intelligence and computer graphics. Computer networks are getting bigger than

ever with the rise of the World Wide Web, telecommunications, cloud computing, edge comput-

ing, and the Internet of Things. This transformation has caused an explosion in the number of

computer programs that communicate with each other over networks – the Internet alone con-

nects billions of devices already.

On one hand, modern computer networks and their applications have become the drivers of

our technological advancement. They enable better citizen services, new kinds of industry, new

ways to connect socially, and even better health with smart medical devices. On the other hand,

these systems and their software are increasingly complex because services depend on other ser-

vices to function. For example, the website of a national service for citizens might depend on an

external identification service to verify that the user can access a certain document. The user’s

web browser, the website, and the identification service are thus integrated: they communicate

with each other to reach the goal of providing authenticated access to documents. In concurrent

and distributed systems, the heart of integration is the notion of protocol: a document that pre-

scribes the communications that the involved parties should perform in order to reach a goal. We

will also refer to communications as interactions.

It is important that protocols are clear and precise. If they are ambiguous, designers of different

parts of the same system might interpret the same protocol differently. Different interpretations

usually lead to errors and errors can have dire consequences in this setting: applications hanging,

data corruption, information leaks, and so forth. The more we equip programmers with solid

methods for defining and implementing protocols correctly, the more likely they are to succeed

at integrating the different parts of concurrent and distributed systems correctly. The ultimate

quest is to increase the intelligibility, reliability, effectiveness, and transparency of these systems,

as well as to make people more productive in building them. It is this quest that makes the

discipline of interaction worth studying.

Computer scientists and mathematicians might get a familiar feeling when presented with the

necessity of achieving both clarity and precision in writing. A computer scientist could point out

that we need a good language to write protocols. A mathematician could say that we need a good

notation.

www.cambridge.org/9781108833769
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83376-9 — Introduction to Choreographies
Fabrizio Montesi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Introduction

From Protocols to Choreographies

Needham and Schroeder [1978] introduced an interesting notation for writing protocols. A com-

munication of a message M from the participant A to the participant B is written

A→ B : M.

To define a protocol where A sends a message M to B and then B passes the same message to

another participant C, we can just compose communications in a sequence:

A→ B : M

B→ C : M.

This is called Alice and Bob notation, due to a presentational style found in security research:

the participants A and B represent the fictional characters Alice and Bob, respectively, who follow

a protocol to perform some task. There might be more participants, like C in our example –

typically a shorthand for Carol or Charlie. The first mention of Alice and Bob appeared in the

seminal paper by Rivest and colleagues [1978] on their public-key cryptosystem:

‘For our scenarios we suppose that A and B (also known as Alice and Bob) are two users of a public-key

cryptosystem.’

We ourselves will use fictional characters like Alice and Bob often in this book.

Over the years, researchers and developers created many more protocol notations. Some of

these notations are visual rather than textual, like Message Sequence Charts [International Telecom-

munication Union 1996]. The message sequence chart of our protocol with Alice, Bob, and

Charlie looks as follows.

Alice

A

Bob

B

Carol

C

M

M

This visual representation (as a message sequence chart) is equivalent to our previous textual

representation (in Alice and Bob notation) in the sense that they contain the same information.

Intuitively, both notations follow the same style: they define a protocol from the point of view of

an external observer, which sees the interactions performed by the participants. In this book, the

protocol definitions given in this style are called choreographies.

In the beginning of the 2000s, researchers and practitioners started working on languages for

writing choreographies that offer more features, for example:

• Including functions for computing the data to be transmitted.

• Nested protocols – that is, the ability to call another protocol as a procedure.

• Manipulating the local memory stores of participants.

We call languages designed for writing choreographies choreographic languages.

www.cambridge.org/9781108833769
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83376-9 — Introduction to Choreographies
Fabrizio Montesi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction 3

Figure 0.1 An abstract depiction of the property of choreography compliance: the interactions that take

place among participants should follow the choreography that has been agreed upon. At the top, the

blueprint represents a choreography that prescribes a message communication between two computers

(represented by the full arrow with the envelope). At the bottom is the real system where the

communication takes place. Compliance (represented by the dashed arrow) guarantees that the real system

execution matches the expectations written in the choreography.

Choreographic languages have been adopted in different contexts. In 2005 the World Wide

Web Consortium (W3C) – the international standard organisation for the Web – published the

Web Services Choreography Description Language (WS-CDL), a language for defining interac-

tions among web services [W3C 2005]. Later, in 2011, the Object Management Group (OMG) –

a global consortium for technological standards – introduced choreographies in their notation for

business processes (BPMN) [Object Management Group 2011]. The usage of choreographies

has been advocated also when dealing with the development of microservices, whereby appli-

cations are fine-grained compositions of independently executable distributed services [Dragoni

et al. 2017]. This momentum has pushed for (and is still pushing for) a lot of research on both

the theory of choreographies and its application to programming [Ancona et al. 2016; Hüttel

et al. 2016; Giallorenzo et al. 2021]. Alice and Bob are in the spotlight.

Choreography Compliance

Choreographies allow software developers and system designers to formalise an agreement on

how the participants of a system should interact. The next step is to develop software and/or

hardware that animates each participant according to such agreement. That is, when the im-

plementations of all participants are run together, their joint execution should give rise to the

interactions expected by the choreography. When this is the case, we say that the system of par-

ticipants complies with the choreography, or that the system has the property of choreography

compliance. (In the literature, compliance is also called conformance.)

www.cambridge.org/9781108833769
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83376-9 — Introduction to Choreographies
Fabrizio Montesi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Introduction

We depict choreography compliance in Figure 0.1, for a simple distributed system with two

participants. At the top we have the choreography agreed upon, depicted as the ‘blueprint’ that

defines the expected communications between the two participants (represented by the com-

puters). At the bottom we have the implementations of the two participants, which are running

together and communicating. The property of compliance (represented by the dashed vertical

arrow) can then be thought of as the combination of the following two conditions:

1. The system enacts only the communications prescribed by the choreography.

2. Vice versa, the communications prescribed by the choreography are enacted by the system.

Violating the first condition would mean that the system behaves unexpectedly: the system is

‘unsound’. Conversely, violating the second condition would mean that the system does not do

all that it is supposed to do: the system is ‘incomplete’.1

Achieving compliance is notoriously challenging. This is not very surprising because coding

concurrent systems is hard: programmers have to reason about all the possible ways in which the

different participants might interact under all possible schedulings of their actions, which leads

quickly to an explosion of the number of cases to be considered [O’Hearn 2018]. The issue is

appropriately named the state explosion problem in computer science [Clarke & Grumberg 1987;

Valmari 1996; Clarke et al. 2011]. It follows that concurrency can look deceptively simple, but

in reality even small programs that look innocuous at first sight might yield undesired emergent

behaviour (the behaviour that emerges from running these programs together). Indeed, program-

mers do not excel at dealing intuitively with concurrency and distribution, experts included [Lu

et al. 2008; Leesatapornwongsa et al. 2016]. Furthermore, achieving choreography compliance

is getting more pressing and difficult in practice: with the passing of time, computer networks

are getting bigger and including more participants. This trend calls for principles of broad appli-

cability.

The challenge posed by choreography compliance implies that we cannot merely stop at de-

signing precise languages and notations for choreographies. We have to go further and develop

rigorous methods for reasoning about the construction of compliant implementations. Motivated

by this realisation, researchers have developed several approaches for formally relating chore-

ographies to implementations. As a consequence, choreographic languages are typically designed

such that choreographies are mechanically readable, amenable to mathematical reasoning, and

used in computer programs [Ancona et al. 2016].

Choreographies in Practice

Some of the methods developed for expressing choreographies and achieving choreography com-

pliance carry principles that can be used on multiple levels. For a programmer, these principles

constitute a mental toolbox for the effective development of concurrent and distributed software.

The same principles form the backbone of powerful tools, which provide automated or semi-

automated help towards the goal of guaranteeing compliance. We now mention some of the most

important application strategies for choreographic languages that have been developed so far.

1 The second condition can be relaxed to allow for systems that do not implement everything prescribed by the

choreography while retaining some of the key benefits of the choreographic approach. We discuss this aspect in

Chapter 12, after our technical presentation.

www.cambridge.org/9781108833769
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83376-9 — Introduction to Choreographies
Fabrizio Montesi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction 5

Documentation and Specification

The most immediate application of choreographic languages is to reduce ambiguity in the docu-

mentation and specification of concurrent and distributed systems [W3C 2005; Object Manage-

ment Group 2011]. The clarity of choreographies can help with choosing which design best suits

the requirements at hand or developing standards for cross-team collaboration.

Furthermore, as we are going to see in this book, some choreographic languages guarantee de-

sirable properties, for example, related to system progress (liveness properties). Writing a speci-

fication in one such language can therefore be used to prove that the specification respects these

properties.

Compilation

Some choreographic languages support the automatic compilation of code for each participant

described in a choreography, which then implements correctly what the participant should do

[Montesi 2013; Ancona et al. 2016; Autili et al. 2020; Giallorenzo et al. 2021]. This idea has

several lines of application.

Scaffolding The generation of skeleton implementations of each participant described in the

choreography [Mendling & Hafner 2008; Carbone and Montesi 2013]. Typically, these

skeletons are programs with details that need to be filled in, like how the data to be com-

municated are computed and transformed. Developers are then responsible for manually

completing these programs with the missing details. This method has been particularly

relevant in the setting of choreographic languages for web services [Object Management

Group 2011; W3C 2005].

Libraries The generation of software libraries, which developers can modularly compose and

invoke within their applications to make sure that they are following the choreogra-

phy correctly [Giallorenzo et al. 2020]. For example, a service provider can use this

technology to publish a library that clients can adopt to interact correctly with the pro-

vided service. While this method might be interesting for any concurrent and distributed

system, it is particularly useful for systems that include multiple vendors or implemen-

tation technologies, as in cloud computing, edge computing, the Internet of Things, and

microservices [Dragoni et al. 2017].

Connectors Choreographies can define protocols for integrating already existing components

over a network. These components can be, for example, functions, objects, or ser-

vices [Carbone and Montesi 2013; Dalla Preda et al. 2017; Scalas et al. 2017; Autili

et al. 2020; Giallorenzo et al. 2020]. From the choreography, we can then generate dis-

tributed code that steers each component correctly to achieve the desired integration.

This application is relevant for different settings, including cloud computing, edge com-

puting, and business processes.

Parallel Algorithms Parallel algorithms, where independent tasks are computed in parallel, can

be expressed as choreographies as well [Ng & Yoshida 2015; Cruz-Filipe & Montesi

2016]. In this case, compilation yields distributed software that, when run with the input

required by the algorithm, returns the expected result. This application is particularly

useful for high-performance computing (HPC) and distributed computation in general.

www.cambridge.org/9781108833769
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83376-9 — Introduction to Choreographies
Fabrizio Montesi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Introduction

Verification

Another popular avenue of application for choreographies is the verification of code that already

exists. There are two main trends, depending on whether verification takes place before or during

execution.

Runtime Verification Given a choreography, we can equip each participant in a system with a

monitoring tool which checks that all incoming and outgoing communications comply

with what is written in the choreography [Castellani et al. 2016; Neykova et al. 2017].

Static Verification Given a choreography and some existing code for a specific participant, it is

possible to automatically analyse the code to check whether it complies with the chore-

ography [Honda et al. 2016; Scalas et al. 2019; Miu et al. 2021]. Choreographic lan-

guages can be computationally complete, making the static verification problem unde-

cidable in general. Therefore, static verification typically comes at the cost of weakening

the expressivity of the choreographic language or the correctness guarantees provided

by choreography compliance.

The applications that we have described require having a choreography, which is usually

written manually. When the code of a system is already written, there are methods for the

semi-automated or automated reconstruction of a choreography from the programs of partic-

ipants [Alur et al. 2003; Lange & Tuosto 2012; Lange et al. 2015; Cruz-Filipe et al. 2017;

Carbone et al. 2018]. Choreographic round-trip engineering is a development process that com-

bines methods for going back and forth between choreographies and participant implementations

[Montesi 2013; Carbone et al. 2018]. The former and the latter can be seen as two views that need

to be kept in sync. In choreographic round-trip engineering, developers can edit any of the two

views and then use (semi-)automated methods to refresh the other. More details and pointers for

further reading are given in Chapter 12.

Why This Book

Applications of choreographies rely on a clear understanding of what choreographies are and

how choreography compliance can be achieved. Having resources for achieving such an under-

standing is therefore important, both for revealing how existing tools work under the hood, and

for the future development of new technologies and the field of choreography-based development

in general. However, at the time of this writing, literature on choreographies consists mainly of

research articles that focus on specific developments and are intended for expert readers. There

is no well-organised presentation of the key ideas of choreographies aimed at newcomers. This

is what motivated the writing of this book, which aims to fill this gap.

More specifically, this book is an introduction to the theory of choreographies and the princi-

ples of choreography compliance. We will see how a semantics of choreographies can be math-

ematically defined by using logical methods, which will provide us with an interpretation of

what running a protocol means. We will also expose the principles of how choreographies can be

correctly implemented in the real world, by defining a translation of choreographies into mod-

els of executable programs. Paraphrasing, we are going to study how the Alices and Bobs that

participate in a computer system can follow their intended choreographies.

www.cambridge.org/9781108833769
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83376-9 — Introduction to Choreographies
Fabrizio Montesi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction 7

Acknowledgements

I would like to thank the many colleagues – too many to mention here – with whom I have

discussed and shared insights on choreographic languages and related topics over the years. The

understanding that I gained from these discussions has been invaluable in the process of writing

this book.

I am very grateful to the following people for interesting discussions and helpful comments

on different contents of this book: Marco Carbone, Ilaria Castellani, Luís Cruz-Filipe, Ornela

Dardha, Mariangiola Dezani-Ciancaglini, Simon Fowler, Saverio Giallorenzo, Eva Graversen,

Thomas Hildebrandt, Ivan Lanese, Marco Peressotti, Valentino Picotti, Nobuko Yoshida,

Gianluigi Zavattaro, and Olaf Zimmermann. Special thanks to Davide Sangiorgi for his advice

on the publication of this book.

This book grew out of my teaching experience, which motivated me to explore how different

features of choreographies can be presented in a coherent framework. In particular, I would

like to extend a special thanks to the students at the University of Southern Denmark who have

studied choreographies with me. The experience of interacting with students of different fields

(computer science, mathematics, and engineering) played an important role in lowering reading

prerequisites and influenced the presentation of several concepts in this book.

I extend my gratitude to the whole team at Cambridge University Press who helped with

making the book a reality, in particular David Tranah and Anna Scriven. Thank you also to

Johanne Aarup Hansen for her illustration of choreographies, which is part of the cover.

Finally, I would like to thank Maja Dembić for her encouragement and support throughout the

process of writing this book.

www.cambridge.org/9781108833769
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83376-9 — Introduction to Choreographies
Fabrizio Montesi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

This Book

Purpose, Audience, and Approach

The aim of this book is to introduce the reader to the theory of choreographies. For newcomers

entirely unfamiliar with the idea of choreographies, the goal is to equip them with a fresh per-

spective on how we can abstract, design, and reason about concurrent and distributed systems.

The book explains what choreographies are, how they can be modelled mathematically, and how

they can be related to compliant implementations.

The intended primary audience consists of professionals and students in the areas of computer

science and engineering, but the book is also designed to be approachable to mathematicians

(willing to become) familiar with context-free grammars. Researchers can use the book to acquire

the necessary knowledge for advancing the state of the art or for applying choreographies in other

contexts. Lecturers should find the book useful in the preparation and execution of courses. Stu-

dents should be helped in their learning by the rigorous and systematic presentation of the theory.

Software architects, developers, and engineers can benefit from the insights in this book to im-

prove their skills regarding integration protocols and the implementation of choreography-based

tools. Project leaders can gain a fundamental understanding of the key issues behind systems

based on choreographies and how to talk about them.

Pedagogically, the book follows an iterative approach. It starts with a very simple choreo-

graphic language and then progressively extends it with more sophisticated features like memory

stores and recursion. Each chapter includes examples and exercises aimed at helping with under-

standing the theory and its relation to practice. Comprehensiveness is not an objective: we will

not present features to capture all possible protocols. References to other relevant techniques and

further developments are given where appropriate, sometimes in the text but mostly in Chap-

ter 12.

Prerequisites

To read this book, you should be familiar with the basics of:

• The theories of sets, functions, and relations.

• Discrete structures like graphs and trees.

• The induction proof technique, including structural induction.

• Context-free grammars.

www.cambridge.org/9781108833769
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83376-9 — Introduction to Choreographies
Fabrizio Montesi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

This Book 9

It is also assumed that the reader is familiar with the notion of concurrency and the basic in-

tuition of how distributed systems are programmed. Relevant books for covering these topics

include [Hopcroft et al. 2003; Tanenbaum & van Steen 2007; Franklin & Daoud 2010; Rosen

& Krithivasan 2012; Cormen et al. 2022]. These prerequisites are attainable in most computer

science BSc degrees.

To study choreographies, we are going to define choreographic languages and then write chore-

ographies as terms of these languages. The syntax of languages is going to be defined using

context-free grammars. To give meaning to choreographies, we are going to extensively use

Plotkin’s structural approach to operational semantics [Plotkin 2004].

The rules defining the semantics of choreographies are going to be rules of inference, borrow-

ing from logical methods and deductive systems in particular. Knowing formal systems based on

rules of inference is an advantage, but not a requirement for reading this book: Chapter 1 pro-

vides a brief introduction to the essential knowledge on these systems that we need for the rest

of the book. The reader familiar with inference systems (including admissible rules) can safely

skip the first chapter and jump straight to Chapter 2.

An important aspect of choreographies is determining how they can be executed correctly in

concurrent and distributed systems, in terms of independent programs for processes. To model

process programs, we will borrow techniques from the area of process calculi. We will introduce

the necessary notions on process calculi as we go along, so knowing this area is not a requirement

for reading this book. The reader familiar with process calculi will recognise that we borrow

many ideas from Milner’s seminal Calculus of Communicating Systems [Milner 1980].

Structure of the Book

This book is structured in three parts, each one consisting of different chapters:

• Part I introduces a minimal language for defining choreographies and the core theory for

relating choreographies to compliant systems of processes.

• Part II extends the choreographic language with standard features from the world of compu-

tation: memory, choices, and recursion. This allows for modelling more realistic scenarios.

• Part III presents other extensions and variations of the theory which deal with more specific

aspects of some concurrent and distributed systems like asynchronous communication. It

also provides references to articles for further reading.

Every chapter contains exercises, which the reader is suggested to solve right where they are

presented. For the exercises marked with ֒→, a solution is given in the Solutions chapter at the

end of this book. The reader is invited to try the exercise first and check the solution later: the

solution is provided as a baseline for comparison and as a way to get inspiration in case of getting

stuck. Some exercises are marked with !, which indicates that they might be more involved.

Online Resources

A web page containing general information, errata, and additional resources is available. At the

time of this writing, it is reachable at

https://fabriziomontesi.com/introduction-to-choreographies/.

www.cambridge.org/9781108833769
www.cambridge.org

