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1Introduction

Optimization is a human instinct. People constantly seek to improve

their lives and the systems that surround them. Optimization is intrinsic

in biology, as exemplified by the evolution of species. Birds optimize

their wings’ shape in real time, and dogs have been shown to find

optimal trajectories. Even more broadly, many laws of physics relate to

optimization, such as the principle of minimum energy. As Leonhard

Euler once wrote, “nothing at all takes place in the universe in which

some rule of maximum or minimum does not appear.”

The term optimization is often used to mean “improvement”, but

mathematically, it is a much more precise concept: finding the best

possible solution by changing variables that can be controlled, often

subject to constraints. Optimization has a broad appeal because it is

applicable in all domains and because of the human desire to make

things better. Any problem where a decision needs to be made can be

cast as an optimization problem.

Although some simple optimization problems can be solved an-

alytically, most practical problems of interest are too complex to be

solved this way. The advent of numerical computing, together with

the development of optimization algorithms, has enabled us to solve

problems of increasing complexity.

By the end of this chapter you should be able to:

1. Understand the design optimization process.

2. Formulate an optimization problem.

3. Identify key characteristics to classify optimization prob-

lems and optimization algorithms.

4. Select an appropriate algorithm for a given optimization

problem.

Optimization problems occur in various areas, such as economics,

political science, management, manufacturing, biology, physics, and

engineering. This book focuses on the application of numerical opti-
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Fig. 1.1 Design phases.

mization to the design of engineering systems. Numerical optimization

first emerged in operations research, which deals with problems such as

deciding on the price of a product, setting up a distribution network,

scheduling, or suggesting routes. Other optimization areas include

optimal control and machine learning. Although we do not cover these

other areas specifically in this book, many of the methods we cover are

useful in those areas.

Design optimization problems abound in the various engineering

disciplines, such as wing design in aerospace engineering, process

control in chemical engineering, structural design in civil engineering,

circuit design in electrical engineering, and mechanism design in

mechanical engineering. Most engineering systems rarely work in

isolation and are linked to other systems. This gave rise to the field of

multidisciplinary design optimization (MDO), which applies numerical

optimization techniques to the design of engineering systems that

involve multiple disciplines.

In the remainder of this chapter, we start by explaining the design

optimization process and contrasting it with the conventional design

process (Section 1.1). Then we explain how to formulate optimization

problems and the different types of problems that can arise (Section 1.2).

Because design optimization problems involve functions of different

types, these are also briefly discussed (Section 1.3). (A more detailed

discussion of the numerical models used to compute these functions is

deferred to Chapter 3.) We then provide an overview of the different

optimization algorithms, highlighting the algorithms covered in this

book and linking to the relevant sections (Section 1.4). We connect

algorithm types and problem types by providing guidelines for selecting

the right algorithm for a given problem (Section 1.5). Finally, we

introduce the notation used throughout the book (Section 1.6).

1.1 Design Optimization Process

Engineering design is an iterative process that engineers follow to

develop a product that accomplishes a given task. For any product

beyond a certain complexity, this process involves teams of engineers

and multiple stages with many iterative loops that may be nested. The

engineering teams are formed to tackle different aspects of the product

at different stages.

The design process can be divided into the sequence of phases shown

in Fig. 1.1. Before the design process begins, we must determine the

requirements and specifications. This might involve market research,

an analysis of current similar designs, and interviews with potential
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1.1 Design Optimization Process 3

∗The evaluation of a given design in engi-

neering is often called the analysis. Engi-

neers and computer scientists also refer to

it as simulation.

customers. In the conceptual design phase, various concepts for the

system are generated and considered. Because this phase should be

short, it usually relies on simplified models and human intuition. For

more complicated systems, the various subsystems are identified. In

the preliminary design phase, a chosen concept and subsystems are

refined by using better models to guide changes in the design, and

the performance expectations are set. The detailed design phase seeks

to complete the design down to every detail so that it can finally be

manufactured. All of these phases require iteration within themselves.

When severe issues are identified, it may be necessary to “go back to the

drawing board” and regress to an earlier phase. This is just a high-level

view; in practical design, each phase may require multiple iterative

processes.

Design optimization is a tool that can replace an iterative design

process to accelerate the design cycle and obtain better results. To

understand the role of design optimization, consider a simplified

version of the conventional engineering design process with only one

iterative loop, as shown in Fig. 1.2 (top). In this process, engineers make

decisions at every stage based on intuition and background knowledge.

Each of the steps in the conventional design process includes human

decisions that are either challenging or impossible to program into com-

puter code. Determining the product specifications requires engineers

to define the problem and do background research. The design cycle

must start with an initial design, which can be based on past designs or

a new idea. In the conventional design process, this initial design is

analyzed in some way to evaluate its performance. This could involve

numerical modeling or actual building and testing. Engineers then

evaluate the design and decide whether it is good enough or not based

on the results.∗ If the answer is no—which is likely to be the case for at

least the first few iterations—the engineer changes the design based

on intuition, experience, or trade studies. When the design is finalized

when it is deemed satisfactory.

The design optimization process can be represented using a flow

diagram similar to that for the conventional design process, as shown in

Fig. 1.2 (bottom). The determination of the specifications and the initial

design are no different from the conventional design process. However,

design optimization requires a formal formulation of the optimization

problem that includes the design variables that are to be changed, the

objective to be minimized, and the constraints that need to be satisfied.

The evaluation of the design is strictly based on numerical values for the

objective and constraints. When a rigorous optimization algorithm is

used, the decision to finalize the design is made only when the current
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Fig. 1.2 Conventional (top) versus de-
sign optimization process (bottom).

design satisfies the optimality conditions that ensure that no other

design “close by” is better. The design changes are made automatically

by the optimization algorithm and do not require intervention from

the designer.

This automated process does not usually provide a “push-button”

solution; it requires human intervention and expertise (often more

expertise than in the traditional process). Human decisions are still

needed in the design optimization process. Before running an op-

timization, in addition to determining the specifications and initial

design, engineers need to formulate the design problem. This requires

expertise in both the subject area and numerical optimization. The

designer must decide what the objective is, which parameters can be

changed, and which constraints must be enforced. These decisions

have profound effects on the outcome, so it is crucial that the designer

formulates the optimization problem well.
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1.1 Design Optimization Process 5

Fig. 1.3 Compared with the conven-

tional design process, MDO increases

the system performance, decreases

the design time, reduces the total cost,

and reduces the uncertainty at a given

point in time.

After running the optimization, engineers must assess the design

because it is unlikely that the first formulation yields a valid and practical

design. After evaluating the optimal design, engineers might decide

to reformulate the optimization problem by changing the objective

function, adding or removing constraints, or changing the set of design

variables. Engineers might also decide to increase the models’ fidelity if

they fail to consider critical physical phenomena, or they might decide

to decrease the fidelity if the models are too expensive to evaluate in an

optimization iteration.

Post-optimality studies are often performed to interpret the optimal

design and the design trends. This might be done by performing pa-

rameter studies, where design variables or other parameters are varied

to quantify their effect on the objective and constraints. Validation of

the result can be done by evaluating the design with higher-fidelity

simulation tools, by performing experiments, or both. It is also possi-

ble to compute post-optimality sensitivities to evaluate which design

variables are the most influential or which constraints drive the design.

These sensitivities can inform where engineers might best allocate

resources to alleviate the driving constraints in future designs.

Design optimization can be used in any of the design phases shown

in Fig. 1.1, where each phase could involve running one or more design

optimizations. We illustrate several advantages of design optimization

in Fig. 1.3, which shows the notional variations of system performance,

cost, and uncertainty as a function of time in design. When using

optimization, the system performance increases more rapidly compared

with the conventional process, achieving a better end result in a shorter

total time. As a result, the cost of the design process is lower. Finally,

the uncertainty in the performance reduces more rapidly as well.

Considering multiple disciplines or components using MDO ampli-

fies the advantages illustrated in Fig. 1.3. The central idea of MDO is to

consider the interactions between components using coupled models

while simultaneously optimizing the design variables from the various

components. In contrast, sequential optimization optimizes one com-

ponent at a time. Even when interactions are considered, sequential

optimization might converge to a suboptimal result (see Section 13.1

for more details and examples).

In this book, we tend to frame problems and discussions in the

context of engineering design. However, the optimization methods

are general and are used in other applications that may not be design

problems, such as optimal control, machine learning, and regression.

In other words, we mean “design” in a general sense, where variables

are changed to optimize an objective.
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Fig. 1.4 Steps in optimization prob-

lem formulation.

∗Some texts call these decision variables or

simply variables.

1.2 Optimization Problem Formulation

The design optimization process requires the designer to translate

their intent to a mathematical statement that can then be solved by

an optimization algorithm. Developing this statement has the added

benefit that it helps the designer better understand the problem. Being

methodical in the formulation of the optimization problem is vital

because the optimizer tends to exploit any weaknesses you might have in your

formulation or model. An inadequate problem formulation can either

cause the optimization to fail or cause it to converge to a mathematical

optimum that is undesirable or unrealistic from an engineering point

of view—the proverbial “right answer to the wrong question”.

To formulate design optimization problems, we follow the procedure

outlined in Fig. 1.4. The first step requires writing a description of the

design problem, including a description of the system, and a statement

of all the goals and requirements. At this point, the description does

not necessarily involve optimization concepts and is often vague.

The next step is to gather as much data and information as possible

about the problem. Some information is already specified in the

problem statement, but more research is usually required to find all the

relevant data on the performance requirements and expectations. Raw

data might need to be processed and organized to gather the information

required for the design problem. The more familiar practitioners are

with the problem, the better prepared they will be to develop a sound

formulation to identify eventual issues in the solutions.

At this stage, it is also essential to identify the analysis procedure

and gather information on that as well. The analysis might consist of a

simple model or a set of elaborate tools. All the possible inputs and

outputs of the analysis should be identified, and its limitations should

be understood. The computational time for the analysis needs to be

considered because optimization requires repeated analysis.

It is usually impossible to learn everything about the problem before

proceeding to the next steps, where we define the design variables, objec-

tive, and constraints. Therefore, information gathering and refinement

are ongoing processes in problem formulation.

1.2.1 Design Variables

The next step is to identify the variables that describe the system, the

design variables,∗ which we represent by the column vector:

𝑥 = [𝑥1 , 𝑥2 , . . . , 𝑥𝑛𝑥 ] . (1.1)
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1.2 Optimization Problem Formulation 7

†This is not to be confused with the conti-

nuity of the objective and constraint func-

tions, which we discuss in Section 1.3.

This vector defines a given design, so different vectors 𝑥 correspond

to different designs. The number of variables, 𝑛𝑥 , determines the

problem’s dimensionality.

The design variables must not depend on each other or any other

parameter, and the optimizer must be free to choose the elements of

𝑥 independently. This means that in the analysis of a given design,

the variables must be input parameters that remain fixed throughout

the analysis process. Otherwise, the optimizer does not have absolute

control of the design variables. Another possible pitfall is to define

a design variable that happens to be a linear combination of other

variables, which results in an ill-defined optimization problem with

an infinite number of combinations of design variable values that

correspond to the same design.

The choice of variables is usually not unique. For example, a square

shape can be parametrized by the length of its side or by its area, and

different unit systems can be used. The choice of units affects the

problem’s scaling but not the functional form of the problem.

The choice of design variables can affect the functional form of the

objective and constraints. For example, some nonlinear relationships

can be converted to linear ones through a change of variables. It is also

possible to introduce or eliminate discontinuities through the choice of

design variables.

A given set of design variable values defines the system’s design, but

whether this system satisfies all the requirements is a separate question

that will be addressed with the constraints in a later step. However, it

is possible and advisable to define the space of allowable values for

the design variables based on the design problem’s specifications and

physical limitations.

The first consideration in the definition of the allowable design

variable values is whether the design variables are continuous or discrete.

Continuous design variables are real numbers that are allowed to vary

continuously within a specified range with no gaps, which we write as

𝑥 𝑖 ≤ 𝑥𝑖 ≤ 𝑥 𝑖 , 𝑖 = 1, . . . , 𝑛𝑥 , (1.2)

where 𝑥 and 𝑥 are lower and upper bounds on the design variables,

respectively. These are also known as bound constraints or side constraints.

Some design variables may be unbounded or bounded on only one

side.

When all the design variables are continuous, the optimization prob-

lem is said to be continuous.† Most of this book focuses on algorithms

that assume continuous design variables.
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𝑐

𝑏

Fig. 1.5 Wingspan (𝑏) and chord (𝑐).

When one or more variables are allowed to have discrete values,

whether real or integer, we have a discrete optimization problem. An

example of a discrete design variable is structural sizing, where only

components of specific thicknesses or cross-sectional areas are available.

Integer design variables are a special case of discrete variables where

the values are integers, such as the number of wheels on a vehicle.

Optimization algorithms that handle discrete variables are discussed

in Chapter 8.

We distinguish the design variable bounds from constraints because

the optimizer has direct control over their values, and they benefit from

a different numerical treatment when solving an optimization problem.

When defining these bounds, we must take care not to unnecessarily

constrain the design space, which would prevent the optimizer from

achieving a better design that is realizable. A smaller allowable range

in the design variable values should make the optimization easier.

However, design variable bounds should be based on actual physical

constraints instead of being artificially limited. An example of a

physical constraint is a lower bound on structural thickness in a weight

minimization problem, where otherwise, the optimizer will discover

that negative sizes yield negative weight. Whenever a design variable

converges to the bound at the optimum, the designer should reconsider

the reasoning for that bound and make sure it is valid. This is because

designers sometimes set bounds that limit the optimization from

obtaining a better objective.

At the formulation stage, we should strive to list as many indepen-

dent design variables as possible. However, it is advisable to start with

a small set of variables when solving a problem for the first time and

then gradually expand the set of design variables.

Some optimization algorithms require the user to provide initial

design variable values. This initial point is usually based on the best

guess the user can produce. This might be an already good design that

the optimization refines further by making small changes. Another

possibility is that the initial guess is a bad design or a “blank slate” that

the optimization changes significantly.

Example 1.1 Design variables for wing design

Consider a wing design problem where the wing planform shape is rect-

angular. The planform could be parametrized by the span (𝑏) and the chord

(𝑐), as shown in Fig. 1.5, so that 𝑥 = [𝑏, 𝑐]. However, this choice is not

unique. Two other variables are often used in aircraft design: wing area (𝑆)

and wing aspect ratio (𝐴𝑅), as shown in Fig. 1.6. Because these variables are

not independent (𝑆 = 𝑏𝑐 and 𝐴𝑅 = 𝑏2/𝑆), we cannot just add them to the set
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Fig. 1.6 Wing design space for two
different sets of design variables, 𝑥 =

[𝑏, 𝑐] and 𝑥 = [𝑆, 𝐴𝑅].
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Fig. 1.7 Parameterizing the chord dis-

tribution of a wing or turbine blade

using a spline reduces the number of

design variables while still allowing

for a wide range of shape changes.

of design variables. Instead, we must pick any two variables out of the four

to parametrize the design because we have four possible variables and two

dependency relationships.

For this wing, the variables must be positive to be physically meaningful,

so we must remember to explicitly bound these variables to be greater than

zero in an optimization. The variables should be bound from below by small

positive values because numerical models are probably not prepared to take

zero values. No upper bound is needed unless the optimization algorithm

requires it.

Tip 1.1 Use splines to parameterize curves

Many problems that involve shapes, functional distributions, and paths

are sometimes implemented with a large number of discrete points. However,

these can be represented more compactly with splines. This is a commonly used

technique in optimization because reducing the number of design variables

often speeds up an optimization with little if any loss in the model parameteri-

zation fidelity. Figure 1.7 shows an example spline describing the shape of a

turbine blade. In this example, only four design variables are used to represent

the curved shape.

1.2.2 Objective Function

To find the best design, we need an objective function, which is a quantity

that determines if one design is better than another. This function must

be a scalar that is computable for a given design variable vector 𝑥. The

objective function can be minimized or maximized, depending on the

problem. For example, a designer might want to minimize the weight

or cost of a given structure. An example of a function to be maximized

could be the range of a vehicle.
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‡Inverting the function (1/ 𝑓 ) is another

way to turn a maximization problem into

a minimization problem, but it is generally

less desirable because it alters the scale of

the problem and could introduce a divide-

by-zero problem.

max
[

𝑓 (𝑥)
]

𝑥∗
0

min
[

− 𝑓 (𝑥)
]

Fig. 1.8 A maximization problem can

be transformed into an equivalent

minimization problem.

Fig. 1.9 A function of two variables

( 𝑓 = 𝑥2
1
+𝑥2

2
in this case) can be visual-

ized by plotting a three-dimensional

surface or contour plot.

The convention adopted in this book is that the objective function, 𝑓 ,

is to be minimized. This convention does not prevent us from maximizing

a function because we can reformulate it as a minimization problem by

finding the minimum of the negative of 𝑓 and then changing the sign,

as follows:

max[ 𝑓 (𝑥)] = −min[− 𝑓 (𝑥)] . (1.3)

This transformation is illustrated in Fig. 1.8.‡

The objective function is computed through a numerical model

whose complexity can range from a simple explicit equation to a system

of coupled implicit models (more on this in Chapter 3).

The choice of objective function is crucial for successful design

optimization. If the function does not represent the true intent of the

designer, it does not matter how precisely the function and its optimum

point are computed—the mathematical optimum will be non-optimal

from the engineering point of view. A bad choice for the objective

function is a common mistake in design optimization.

The choice of objective function is not always obvious. For example,

minimizing the weight of a vehicle might sound like a good idea, but

this might result in a vehicle that is too expensive to manufacture. In

this case, manufacturing cost would probably be a better objective.

However, there is a trade-off between manufacturing cost and the

performance of the vehicle. It might not be obvious which of these

objectives is the most appropriate one because this trade-off depends on

customer preferences. This issue motivates multiobjective optimization,

which is the subject of Chapter 9. Multiobjective optimization does

not yield a single design but rather a range of designs that settle for

different trade-offs between the objectives.

Experimenting with different objectives should be part of the design

exploration process (this is represented by the outer loop in the design

optimization process in Fig. 1.2). Results from optimizing the “wrong”

objective can still yield insights into the design trade-offs and trends

for the system at hand.

In Ex. 1.1, we have the luxury of being able to visualize the design

space because we have only two variables. For more than three variables,

it becomes impossible to visualize the design space. We can also

visualize the objective function for two variables, as shown in Fig. 1.9.

In this figure, we plot the function values using the vertical axis, which

results in a three-dimensional surface. Although plotting the surface

might provide intuition about the function, it is not possible to locate

the points accurately when drawing on a two-dimensional surface.

Another possibility is to plot the contours of the function, which

are lines of constant value, as shown in Fig. 1.10. We prefer this type
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