
Cambridge University Press
978-1-108-83334-9 — Essentials of Software Testing
Ralf Bierig , Stephen Brown , Edgar Galván , Joe Timoney
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Introduction to Software Testing

This chapter discusses the motivations for testing software, and also discusses why

exhaustive testing is not generally feasible, and thus various test heuristics must be

used. These test heuristics, and the lack of a standard software specification1 language,

are what makes software testing as much an art as a science.

1.1 The Software Industry

The software industry has come a long way since its beginnings in the 1950s. The

independent software industry was essentially born in 1969 when IBM announced

that it would stop treating its software as a free add-on to its computers, and instead

would sell software and hardware as separate products. This opened up the market to

external companies that could produce and sell software for IBM machines.

Software products for mass consumption arrived in 1981 with the launch of PC-

based software packages. Another dramatic boost came in the 1990s with the arrival

of the World Wide Web, and in the 2000s with mobile devices. In 2010 the top 500

companies in the global software industry had revenues of $492 billion, and by 2018

this had risen to $868 billion.2 The industry is extremely dynamic and continually

undergoing rapid change as new innovations appear. Unlike some other industries,

for example transportation, it is still in many ways an immature industry. It does not,

in general, have a set of quality standards that have been gained through years of

experience.

Numerous examples exist of the results of failures in software quality and the

costs it can incur. Well-publicised incidents include the failure of the European Space

Agency’s Ariane 5 rocket, the Therac-25 radiation therapy machine, and the loss of the

Mars Climate Orbiter in 1999. A study by the US Department of Commerce’s National

Institute of Standards and Technology (NIST) in 2002 estimated that the annual cost

of inadequate software testing to the US economy was up to $59.5 billion per year.3

1 A software specification defines clearly and unambiguously what the software must do.
2 Software Magazine. 2018 Software 500 Companies. Available at: www.rcpbuyersguide.com/

top-companies.php.
3 NIST. The Economic Impacts of Inadequate Infrastructure for Software Testing. NIST, 2002.

www.cambridge.org/9781108833349
www.cambridge.org

Cambridge University Press
978-1-108-83334-9 — Essentials of Software Testing
Ralf Bierig , Stephen Brown , Edgar Galván , Joe Timoney
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction to Software Testing

However, many participants in the industry do apply quality models and measures

to the processes through which their software is produced. Software testing is an

important part of the software quality assurance process, and is an important disci-

pline within software engineering. It has an important role to play throughout the

software development life cycle, whether being used in a verification and validation

context, or as part of a test-driven software development process such as eXtreme

Programming.

Software engineering as a discipline grew out of the software crisis. This term

was first used at the end of the 1960s, but it really began to have meaning through

the 1970s as the software industry was growing. This reflected the increasing size

and complexity of software projects combined with the lack of formal procedures for

managing such projects. This resulted in a number of problems:

• projects were running over budget;

• projects were running over time;

• the software products were of low quality;

• the software products often did not meet requirements;

• projects were chaotic; and

• software maintenance was increasingly difficult.

If the software industry was to keep growing, and the use of software was to become

more widespread, this situation could not continue. The solution was to formalise the

roles and responsibilities of software engineering personnel. These software engineers

would plan and document in detail the goals of each software project and how it was

to be carried out; they would manage the process via which the software code would

be created; and they would ensure that the end result had attributes that showed it

was a quality product. This relationship between quality management and software

engineering meant that software testing would be integrated into its field of influence.

Moreover, the field of software testing was also going to have to change if the industry

wanted to get over the software crisis.

While the difference between debugging a program and testing a program was

recognised by the 1970s, it was only from this time on that testing began to take a

significant role in the production of software. It was to change from being an activity

that happened at the end of the product cycle, to check that the product worked, to

an activity that takes place throughout each stage of development, catching faults as

early as possible. A number of studies comparing the relative costs of early and late

defect detection have all reached the same conclusion: the earlier the defect is caught,

the lower the cost of fixing it.

The progressive improvement of software engineering practices has led to a signif-

icant improvement in software quality. The short-term benefits of software testing to

the business include improving the performance, interoperability and conformance of

the software products produced. In the longer term, testing reduces the future costs,

and builds customer confidence.

Software testing is integrated into many of the software development processes in

use today. Approaches such as test driven development (TDD) use testing to drive the

www.cambridge.org/9781108833349
www.cambridge.org

Cambridge University Press
978-1-108-83334-9 — Essentials of Software Testing
Ralf Bierig , Stephen Brown , Edgar Galván , Joe Timoney
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 The Software Industry 3

code development. In this approach, the tests are developed (often with the assistance

of the end-user or customer) before the code is written.

1.1.1 Software Testing and Quality

Proper software testing procedures reduce the risks associated with software devel-

opment. Modern programs are often very complex, having millions of lines of code

and multiple interactions with other software systems. And they often implement

a solution that has been defined in very abstract terms, described as a vague set

of requirements lacking in exactness and detail. Quality problems are further com-

pounded by external pressures on developers from business owners, imposing strict

deadlines and budgets to reduce both the time to market and associated production

costs. These pressures can result in inadequate software testing, leading to reduced

quality. Poor quality leads to increased software failures, increased development costs,

and increased delays in releasing software. More severe outcomes for a business can

be a loss of reputation, leading to reduced market share, or even to legal claims.

The international standard ISO/IEC 250104 defines a product quality model with

eight quality characteristics (Table 1.1).

Table 1.1 Software quality attributes in ISO/IEC 25010.

Attribute Characteristics

Functional

suitability

Functional completeness, functional correctness, functional

appropriateness

Performance

efficiency

Time behaviour, resource utilisation, capacity

Compatibility Coexistence, interoperability

Usability Appropriateness, recognisability, learnability, operability, user error

protection, user interface aesthetics, accessibility

Reliability Maturity, availability, fault tolerance, recoverability

Security Confidentiality, integrity, non-repudiation, authenticity, accountability

Maintainability Modularity, reusability, analysability, modifiability, testability

Portability Adaptability, installability, conformance, replaceability

Attributes that can be measured objectively, such as performance and functionality,

are easier to test than those that require a subjective opinion, such as learnability and

installability.

1.1.2 Software Testing and Risk Management

Software testing can be viewed as a risk-management activity. The more resources

that are spent on testing, the lower the probability of a software failure, but the higher

4 ISO/IEC 25010:2011 Systems and software engineering – Systems and software Quality Requirements

and Evaluation (SQuaRE) – System and software quality models.

www.cambridge.org/9781108833349
www.cambridge.org

Cambridge University Press
978-1-108-83334-9 — Essentials of Software Testing
Ralf Bierig , Stephen Brown , Edgar Galván , Joe Timoney
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction to Software Testing

the testing cost. One factor in risk management is to compare the expected cost of

failure against the cost of testing. The expected cost is estimated as follows:

expected cost = risk of failure × cost of failure

For a business, there are short- and long-term costs associated with failure. The

short-term costs are primarily related to fixing the problem, but may also be from lost

revenue if product release is delayed. The long-term costs are primarily the costs of

losing reputation and associated sales.

The cost of testing needs to be proportional to income and the cost of failure (with

the current state of the art, it is arguable that all software is subject to failure at some

stage). The effectiveness of testing can generally be increased by the testing team

being involved early in the process. Direct involvement of customers/users is also

an effective strategy. The expected cost of failure is controlled through reducing the

probability of failure through rigorous engineering development practices and quality

assurance (testing is part of the quality assurance process).

Software testing can be addressed as an optimisation process: getting the best

return for the investment. Increased investment in testing reduces the cost of software

failures, but increases the cost of software development. The key is to find the best

balance between these costs. This interaction between cost of testing and profit is

demonstrated in Figure 1.1.

Figure 1.1 Cost of testing vs. profit.

1.2 Mistakes, Faults, and Failures

Leaving aside the broader relationship between software testing and the attributes of

quality for the moment, the most common application of testing is to search for defects

present in a piece of software and/or verify that particular defects are not present in that

software. The term software defect is often expanded into three categories: mistakes,

faults, and failures.

1. Mistakes: these are made by software developers. These are conceptual errors

and can result in one or more faults in the source code.

www.cambridge.org/9781108833349
www.cambridge.org

Cambridge University Press
978-1-108-83334-9 — Essentials of Software Testing
Ralf Bierig , Stephen Brown , Edgar Galván , Joe Timoney
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Mistakes, Faults, and Failures 5

2. Faults: these are flaws in the source code, and can be the product of one or more

mistakes. Faults can lead to failures during program execution.

3. Failures: these are symptoms of a fault, and consist of incorrect, or out-of-

specification behaviour by the software. Faults may remain hidden until a cer-

tain set of conditions are met which reveal them as a failure in the software

execution. When a failure is detected by software, it is often indicated by an

error code.

1.2.1 Mistakes

Mistakes can be made in a number of different ways. For example:

1. A misunderstanding in communication, such as confusing metric with imperial

measurements.

2. A misinterpretation or misreading of the specification by a software developer,

such as swapping the order of parameters by mistake.

3. Assuming defaults: for example, in Java integers have a default value of 0, but

in C++ there is no default value.

1.2.2 Software Faults

It is helpful to have a classification of the types of faults. The classification can be

used for a number of purposes:

1. When analysing, designing, or coding software: as a checklist of faults to avoid.

2. When developing software tests: as a guide to likely faults.

3. When undergoing software process evaluation or improvement: as input data.

There are a number of different ways to categorise these software faults, but no

single, accepted standard exists. The significance of faults can vary depending on

the circumstances. One representative categorisation5 identifies the following 10 fault

types:

Algorithmic A unit of the software does not produce an output corresponding to

the given input under the designated algorithm.

Syntax Source code is not in conformance with the programming language

specification.

Computation and precision The calculated result using the chosen formula

does not conform to the expected accuracy or precision.

Documentation Incomplete or incorrect documentation.

Stress or overload The system fails to operate correctly when the applied load

exceeds the specified maximum for the system.

5 S.L. Pfleeger and J.M. Atlee, Software Engineering: Theory and Practice, 4th ed. Pearson Higher

Education, 2010.

www.cambridge.org/9781108833349
www.cambridge.org

Cambridge University Press
978-1-108-83334-9 — Essentials of Software Testing
Ralf Bierig , Stephen Brown , Edgar Galván , Joe Timoney
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Introduction to Software Testing

Capacity and boundary The system fails to operate correctly when data stores

are filled beyond their capacity.

Timing or coordination The timing or coordination requirements between inter-

acting, concurrent processes are not met. These faults are a significant problem

in real-time systems.6 where processes have strict timing requirements and may

have to be executed in a carefully defined sequence.

Throughput or performance The developed system does not meet its specified

throughput or other performance requirements.

Recovery The system does not recover to the expected performance even after a

fault is detected and corrected.

Standards and procedure A team member does not follow the standards

deployed by the organisation, which will lead to the problem of other members

having to understand the logic employed or to find the data description needed

for solving a problem.

It is very difficult to find industry figures relating to software faults, but one example

is a study by Hewlett Packard7 on the frequency of occurrence of various fault types,

which found that 50% of the faults analysed were either algorithmic or computation

and precision errors.

1.2.3 Software Failures

Classifying the severity of failures that result from particular faults is more difficult

because of their subjective nature, particularly with failures that do not result in a

program crash. One user may regard a particular failure as being very serious, while

another may not feel as strongly about it. Table 1.2 shows an example of how failures

can be classified by their severity.

Table 1.2 Sample classiication of software failures.

Severity level Behaviour

1 (most severe) Failure causes a system crash and the recovery time is extensive; or

failure causes a loss of function and data and there is no workaround.

2 Failure causes a loss of function or data but there is a manual

workaround to temporarily accomplish the tasks.

3 Failure causes a partial loss of function or data where the user can

accomplish most of the tasks with a small amount of workaround.

4 (least severe) Failure causes cosmetic and minor inconveniences where all the user

tasks can still be accomplished.

Hardware failures show a typical bathtub curve, where there is a high failure rate

initially, followed by a period of relatively low failures, but eventually the failure

rate rises again. The early failures are caused by manufacturing issues, and handling

6 A real-time system is one with well-defined time constraints.
7 Pfleeger and Atlee, Software Engineering.

www.cambridge.org/9781108833349
www.cambridge.org

Cambridge University Press
978-1-108-83334-9 — Essentials of Software Testing
Ralf Bierig , Stephen Brown , Edgar Galván , Joe Timoney
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Mistakes, Faults, and Failures 7

and installation errors. As these are ironed out, during the main operational life of a

product, the failure rate stays low. Eventually, however, hardware ages and wears out,

and the failure rates rise again. Most consumer products follow this curve.

Software failures demonstrate a similar pattern, but for different reasons as software

does not physically wear out. A typical curve for the failure rate of software is shown

in Figure 1.2.

Upgrades

F
a

il
u

re
 r

a
te

Test / debug Operational

lifetime
Retirement

Time

M
ai

nte
nan

ce

re
le

as
es

Figure 1.2 Failure rate for a software product over its life cycle.

During initial development, the failure rate is likely to fall rapidly during the test

and debug cycle. After the first version is released, during the operational lifetime of

the software, there may be periodic upgrades, which tend to introduce new failures,

exposing latent faults in the software or introducing new faults. These upgrades may,

for example, include additional features, changes required for integration with other

software, or modifications required to support changes in the execution environment

(such as operating system updates). Subsequent maintenance activity progressively

lowers the failure rate again, reflecting an overall increase in code quality. Finally, the

software is retired when it is no longer actively developed; this is particularly relevant

to open-source software, where the original developer may stop maintaining their

contribution. Eventually changes to the environment, or to software dependencies,

may lead to failure again.8

The bathtub model is relevant to modern, Agile development projects with contin-

uous integration of software features. New features are added on a regular basis, and

software is frequently redesigned (referred to as refactoring). The changes introduced

by this rapid rate of upgrading are likely to lead to new faults being introduced. Most

8 For example, Python 3 was not fully compatible with Python 2, and Python 2 libraries that were not

updated stopped working with libraries that were updated.

www.cambridge.org/9781108833349
www.cambridge.org

Cambridge University Press
978-1-108-83334-9 — Essentials of Software Testing
Ralf Bierig , Stephen Brown , Edgar Galván , Joe Timoney
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Introduction to Software Testing

software is eventually replaced, or ceases to be maintained as a supported version,

leaving existing users with an eventual rise in the failure rate.9

1.2.4 Need for Testing

There are a number of reasons why software has faults, or is perceived to have faults.

For example, it is difficult to:

• collect the user requirements correctly;

• specify the required software behaviour correctly;

• design software correctly;

• implement software correctly; and

• modify software correctly.

There are two engineering approaches to developing correct systems: one is for-

ward engineering, the other is based on feedback.

The ideal software development project, as shown in Figure 1.3, starts with the user

and ends with a correct implementation. The development is completely reliable: each

activity creates the correct outputs based on its inputs (specification) from the previous

activity. The end product thereby matches its specification and meets the user’s needs.

User

requirements

Software

speci�cation

Reliable

development

Software

design

Implementation

Figure 1.3 Ideal project progression using forward engineering.

In practice, however, all the development steps are subject to mistakes and ambigui-

ties, leading to less-than-ideal results. To resolve this, each of the steps must be subject

to a check to ensure that it has been carried out properly, and to provide an opportunity

to fix any mistakes before proceeding. The verification and fixing following unreliable

development at each step is shown in Figure 1.4.

9 For example, support for the Windows 7 operating system ended at the beginning of 2020, leaving

existing users with no security upgrades. A progressive rise in the failure rate of these systems can be

expected until they are replaced with Windows 10.

www.cambridge.org/9781108833349
www.cambridge.org

Cambridge University Press
978-1-108-83334-9 — Essentials of Software Testing
Ralf Bierig , Stephen Brown , Edgar Galván , Joe Timoney
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.3 The Role of Speciications 9

User

requirements

Unreliable

development

Software

speci�cation

Software

design

Veri�cation and

�xing

Validation

Implementation

Figure 1.4 Realistic project progression with verification and validation.

For software products, in addition to checking that each individual step has been

done correctly, it has been found in practice that a second form of checking is nec-

essary: making sure that the implementation meets users’ needs. The first form is

referred to as verification, the second as validation.

1.3 The Role of Speciications

A software specification identifies the precise and detailed behaviour that the software

is required to provide. It gives a model of what the software is supposed to do. These

specifications play a key role in testing. In order to be tested, the correct behaviour of

software must be known. This implies the need for detailed specifications (or software

requirements10).

To support thorough testing of the code, specifications must describe both normal

and error behaviour. Normal behaviour is the expected behaviour (or output) of the

software when the inputs are not in error. Error behaviour is the expected results of the

software when one or more inputs are in error, or will cause an error in processing.

Attempts have been made to develop test approaches based on reasonable behaviour

of software – often deduced from the name of the method. This fails as not every

developer and tester will have exactly the same expectations of reasonable behaviour,

especially for error cases. Some examples include the following:

• If an invalid input is provided, should the method ignore it, return an invalid

value, raise an exception, or write to an error log?

• If a temperature is calculated, should it be returned in degrees Celsius (°C),

kelvin (K), or degrees Fahrenheit (°F)?

10 Note the difference between software requirements and user requirements. Software requirements state

what the software must do. User requirements state what the user wants to be able to do.

www.cambridge.org/9781108833349
www.cambridge.org

Cambridge University Press
978-1-108-83334-9 — Essentials of Software Testing
Ralf Bierig , Stephen Brown , Edgar Galván , Joe Timoney
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Introduction to Software Testing

• Is zero to be treated as a positive number, a negative number or neither?

• Can an angle have a value of 0°? Can a shape have an area of 0 cm2? Or even a

negative area?

In general terms, the expected behaviour of a program in handling errors in the

input data is to indicate that this has occurred – for example by returning an error

code, or raising an exception. But in order to test the software, the exact details of this

must be defined. These specify exactly what an error in the input is, and how such

errors should be notified to the caller. In summary, in order to test software properly,

detailed specifications are necessary.11

Note that often a tester will need to convert a specification from a written English

or natural-language form to one that is more concise and easier to create tests from.

1.4 Manual Test Example

Consider a program check for an online shop that determines whether a customer

should get a price discount on their next purchase, based on their bonus points to date,

and whether they are a gold customer.

Bonus points accumulate as customers make purchases. Gold customers get a dis-

count once they have exceeded 80 bonus points. Other customers only get a discount

once they have more than 120 bonus points. All customers always have at least one

bonus point.

The program returns one of the following:

• FULLPRICE, which indicates that the customer should be charged the full

price.

• DISCOUNT, which indicates that the customer should be given a discount.

• ERROR, which indicates an error in the inputs (bonusPoints is invalid if it

is less than 1).

The inputs are the number of bonusPoints the customer has, and a flag indicat-

ing whether the customer is a gold customer or not (true or false, respectively). For the

sake of simplicity, we will ignore illegal input values at the moment (where the first

parameter is not a number, or the second parameter is not a Boolean).

Output from some demonstration runs of the program, using the command line,12

are shown in Figure 1.5. All console output will be shown like this.

These results look correct: a regular customer with 100 points is charged the full

price, a gold customer with 100 points is given a discount, and −10 is an invalid

number of points.

So does this method work correctly? Does it work for every possible input? Next,

we will consider the theory of software testing to try to answer these questions.

11 One exception is in stability testing, where tests ensure that the software does not crash.
12 See Section 14.4.2 for details of how to run the examples.

www.cambridge.org/9781108833349
www.cambridge.org

