The Problems

1. (**Real Sequences**) (i) At most how many real numbers can be chosen from the open interval (0, 2n + 1) if none is at distance less than 1 from an integer multiple of another? To spell it out, let $n \ge 1$ be a fixed natural number. Suppose that $0 < x_1 < \cdots < x_N < 2n + 1$ are such that $|kx_i - x_j| \ge 1$ for all natural numbers i, j and k with $1 \le i < j \le N$. At most how large is N?

(ii) At most how many real numbers can be chosen from the open interval (0, (3n + 1)/2) = (0, 3n/2 + 1/2) if none is at distance less than 1 from an *odd* multiple of another?

2. (Vulgar Fractions) Show that every rational number r, 0 < r < 1, is the sum of a finite number of reciprocals of distinct natural numbers. For example,

$$\frac{4699}{7320} = \frac{1}{2} + \frac{1}{8} + \frac{1}{60} + \frac{1}{3660}.$$

3. (**Rational and Irrational Sums**) Let $2 \le n_1 < n_2 < \cdots$ be a sequence of positive integers such that

$$n_{i+1} \ge n_i(n_i - 1) + 1$$

for every $i \ge 1$, and set

$$r=\sum_{i=1}^{\infty}\frac{1}{n_i}.$$

Show that *r* is rational if and only if $n_{i+1} = n_i(n_i - 1) + 1$ for all but finitely many values of *i*.

4. (Ships in Fog) Five ships, *A*, *B*, *C*, *D* and *E* are sailing in a fog with constant and different speeds, and constant and different straight-line courses, with different directions. The seven pairs *AB*, *AC*, *AD*, *BC*, *BD*, *CE* and *DE*

2

The Problems

have each had near misses, call them '*collisions*'. Does it follow that, in addition, *E* collides with either *A* or *B*? Maybe both? And does *C* collide with *D*?

5. (A Family of Intersections) For 0 , a*p* $-random subset <math>X = X_p$ of $[n] = \{1, 2, ..., n\}$ is obtained by taking *n* independent binomial random variables $\xi_1, \xi_2, ..., \xi_n$ with $\mathbb{P}(\xi_i = 1) = p = 1 - \mathbb{P}(\xi_i = 0)$, and setting $X_p = \{i : \xi_i = 1\}$. The probability measure \mathbb{P}_p on \mathcal{P}_n , the set of all 2^n subsets of [n], is given by

$$\mathbb{P}_p(A) = \mathbb{P}(X_p = A) = p^{|A|} (1-p)^{n-|A|},$$

so that the probability of a family $\mathcal{A} \subset \mathcal{P}_n$ is

$$\mathbb{P}_p(\mathcal{A}) = \sum_{A \in \mathcal{A}} \mathbb{P}_p(A) = \sum_{A \in \mathcal{A}} p^{|A|} (1-p)^{n-|A|}.$$

Let $\mathcal{A} \subset \mathcal{P}_n$ have *p*-probability $r \colon \mathbb{P}_p(\mathcal{A}) = r$, and define

 $\mathcal{J} = \mathcal{J}(\mathcal{A}) = \{A \cap B \colon A, B \in \mathcal{A}\}.$

Show that

$$\mathbb{P}_{p^2}(\mathcal{J}) \ge r^2.$$

6. (**The Basel Problem**) Forget for a moment the mathematical rigour we have to have in our proofs, and give a beautiful solution of the famous 'Basel Problem': prove that

$$\sum_{k=1}^{\infty} 1/k^2 = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} \dots = \pi^2/6.$$

7. (**Reciprocals of Primes**) Give three proofs of the theorem that the sum of reciprocals of the primes is divergent: $\sum_{p} 1/p = \infty$, where the summation is over the primes.

8. (**Reciprocals of Integers**) Let $1 < n_1 < n_2 < \cdots$ be a sequence of natural numbers such that $\sum_{i=1}^{\infty} 1/n_i < \infty$. Show that the set

$$M = M(n_1, n_2, \dots) = \{n_1^{\alpha_1} \dots n_k^{\alpha_k} : \alpha_i \ge 0\}$$

has zero density, i.e. if $\varepsilon > 0$ and *n* is large enough (depending on ε) then there are at most εn elements of *M* that are at most *n*.

9. (Completing Matrices) For $1 \le k < n$, let $\mathcal{A}_{k,n}$ be the collection of $n \times n$ matrices with each entry zero or one, having precisely k ones in each row and each column. Show that for $1 \le r < n$ an $r \times n$ matrix of zeros and ones has an extension to a matrix in $\mathcal{A}_{k,n}$ if and only if each row has precisely k ones, and in each column there are at least k + r - n and at most k ones.

10. (**Convex Polyhedra – Take One**) Is there a convex polyhedron which contains a point whose perpendicular projection on the plane of every face falls outside the face? And just fails to fall in the interior of the face?

11. (**Convex Polyhedra – Take Two**) Show that every 3-dimensional polyhedron with at least thirteen faces has a face meeting at least six other faces. Two faces are said to meet if they share a vertex or an edge.

12. (A Very Old Tripos Problem) Let p, q and r be complex numbers with $pq \neq r$. Transform the cubic $x^3 - px^2 + qx - r = 0$, where the roots are a, b, c, into one whose roots are $\frac{1}{a+b}$, $\frac{1}{a+c}$, $\frac{1}{b+c}$.

13. (**Angle Bisectors**) Show that if two (internal) angle bisectors of a triangle are equal then the angles themselves are also equal.

14. (Chasing Angles – Take One) Let *ABC* be an isosceles triangle with angle 20° at the apex *A*. Let *D* be a point on *AB* and *E* a point on *AC* such that $\angle BCD = 50^\circ$ and $\angle CBE = 60^\circ$, as in Figure 1. What is the angle $\angle BED$?

Figure 1 Adventitious angles

3

4

The Problems

15. (Chasing Angles – Take Two) Let *ABC* be an isosceles triangle with angle 20° at the apex *A* and so angles 80° at the base; furthermore, let *D* be a point on the side *AB* such that $\triangle CD = 10^\circ$, and *E* on *AC* such that $\triangle BE = 20^\circ$, as in Figure 2. Use entirely elementary methods, without any recourse to trigonometry, to determine the angle $\triangle DE$.

Figure 2 Information about our points

16. (**Pythagorean Triples**) We call a triple (a, b, c) of natural numbers a *Pythagorean triple* if $a^2+b^2 = c^2$. Also, a Pythagorean triple (a, b, c) is *primitive* or *relatively prime* if *a*, *b* and *c* do not have a common divisor (greater than 1). Clearly, every Pythagorean triple is a multiple of a primitive Pythagorean triple. Also, if (a, b, c) is a primitive Pythagorean triple then *a* and *b* have opposite parities since if both of them are odd then the sum of their squares is 2 modulo 4, so it cannot be a square, and if both of them are even then the sum of their squares is also even, so *c* also has to be even. Usually we take *a* to be odd and *b* even.

Show that (a, b, c) is a primitive Pythagorean triple with a odd and b even

if and only if there are relatively prime numbers $u > v \ge 1$ of opposite parity such that $a = u^2 - v^2$, b = 2uv and $c = u^2 + v^2$. Even more, give two proofs, one algebraic and the other geometric.

17. (Fermat's Theorem for Fourth Powers) Show that the equation $a^4 + b^4 = c^4$ has no solutions in natural numbers. Putting it slightly differently: if *a* and *b* are strictly positive integers then $a^4 + b^4$ cannot be a fourth power.

18. (**Congruent Numbers**) A natural number *n* is said to be *congruent* if there is a right-angled triangle with rational sides, whose area is *n*. For example, the right-angled triangle with sides 3, 4 and 5 tells us that 6 is congruent. Show that 1 is not a congruent number.

19. (A Rational Sum) Find a necessary and sufficient condition for a rational number s > 1 that ensures that $\sqrt{s+1} - \sqrt{s-1}$ is also rational, where $\sqrt{\cdot}$ denotes the positive square root.

20. (A Quartic Equation) Find a large family of integer solutions of

$$A^4 + B^4 = C^4 + D^4. (1)$$

More precisely, look for fairly general polynomials *A*, *B*, *C* and *D* in $\mathbb{Z}[a, b]$ such that (1) holds. To this end, look for the solution in the form

$$A = ax + c, \qquad B = bx - d,$$

$$C = ax + d, \qquad D = bx + c$$

where *a*, *b*, *c*, *d* and *x* are rational numbers. Considering *a*, *b*, *c* and *d* constant, (1) holds if *x* satisfies a quartic whose first and last coefficients are 0. Show that with a suitable choice of *a*, *b*, *c* and *d* the coefficient of x^3 is also 0, and use this to find our polynomials.

21. (**Regular Polygons**) Show that, of all polygons of the same number of sides and equal perimeter length, the regular polygon has the greatest area.

22. (Flexible Polygons) Consider all polygons with given sides but one in a given cyclic order. Show that if the area of such a polygon is maximal then it may have a circle circumscribed about it, having the unknown side for a diameter of the circle.

23. (**Polygons of Maximal Area**) Show that the area of a polygon with given sides is not larger than the cyclic polygon with these sides, i.e. the one that may have a circle circumscribed about it. The reader is invited to find several solutions of this problem.

5

6

The Problems

24. (Constructing $\sqrt[3]{2}$) Let OS_1PS_2 be a $2m \times m$ rectangle with $OS_1 = PS_2$ of length 2m and $OS_2 = PS_1$ of length m. Let C be the circle through the vertices O, S_1 , P and S_2 , and let Q be the point of the PS_2 arc of C such that the line through P and Q meets the (extended) lines OS_1 and OS_2 in R_1 and R_2 , and the segments PR_1 and QR_2 have the same length. Finally, let T_1 and T_2 be the projections of Q on the segments OR_1 and OR_2 . Show that OT_1 has length $\sqrt[3]{2}m$.

25. (Circumscribed Quadrilaterals) Let ABCD be a quadrilateral circumscribed about a circle with centre O. Let E and F be the midpoints of the

Figure 3 A quadrilateral circumscribed about a circle with centre O; the points E and F are the midpoints of the diagonals AC and BD.

diagonals AC and BD, as in Figure 3. Show that E, F and O are collinear.

26. (Partitions of Integers) A *partition* of an integer *n* is a sequence $\lambda = (\lambda_1, ..., \lambda_k)$ of positive integers $\lambda_1 \ge \cdots \ge \lambda_k \ge 1$ whose sum is *n*. This partition is also written as $\lambda_1 + \cdots + \lambda_k$. Each λ_i is a *summand* or *part*; the number of parts, *k*, is the *length* of the partition λ . As customary, we shall write p(n) for the *partition function*, the number of partitions of $n \ge 1$. Note that 4 has five partitions: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1, so p(4) = 5, and 5 has seven partitions: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1, so p(5) = 7. Also, p(0) = 1: the only partition of 0 is the empty partition.

(i) Show that the formal power series $\sum_{n=0}^{\infty} p(n)x^n$, called the *generating function* of p(n), is

$$(1 + x + x^{2} + x^{3} + \cdots)(1 + x^{2} + x^{4} + x^{6} + \cdots)(1 + x^{3} + x^{6} + x^{9} + \cdots)\cdots,$$

i.e.

$$\frac{1}{1-x}\cdot\frac{1}{1-x^2}\cdot\frac{1}{1-x^3}\cdots$$

(ii) Give three proofs of the assertion that the number of partitions of n

without 1 as a part is p(n) - p(n - 1). For example, 5 has two partitions not containing 1, namely 5 and 3 + 2, and p(5) - p(4) = 7 - 5 = 2.

27. (**Parts Divisible by** m **and** 2m) Show that the number of partitions of n in which no multiple of m is repeated is equal to the number of partitions of n without a multiple of 2m.

28. (Unequal vs Odd Partitions) (i) Show that the number of partitions of *n* into unequal parts is equal to the number of partitions into odd parts.

(ii) Let $m \ge 1$. Show that the number of partitions of *n* in which no part is repeated more than *m* times is equal to the number of partitions in which no part is a multiple of m + 1.

29. (Sparse Bases) A set *S* of natural numbers has density zero if S(n) tends to zero as *n* tends to infinity, where S(n) is the number of elements of *S* not greater than *n*.

Show that there is a set $S \subset \mathbb{N}$ of density zero such that every positive rational is the sum of a finite number of reciprocals of distinct terms of *S*.

30. (Sets with Small Pairwise Intersections) Let $A_1, \ldots, A_m \in [n]^{(r)}$, i.e. let A_1, \ldots, A_m be *r*-subsets of $[n] = \{1, \ldots, n\}$. Show that if $|A_i \cap A_j| \le s < r^2/n$ for all $1 \le i < j \le m$, then $m \le n(r-s)/(r^2 - sn)$.

Show also that if r^2/n is an integer and $|A_i \cap A_j| < r^2/n$ for all $1 \le i < j \le m$, then $m \le r - r^2/n + 1 \le n/4 + 1$.

31. (The Diagonals of Zero–One Matrices) Given $n \ge 1$, let \mathcal{A}_n be the set of all $n \times n$ matrices with each entry 0 or 1. For $A \in \mathcal{A}_n$, write $\mathcal{A}(A)$ for the set of matrices obtained from A by permuting its rows. Thus if no two rows of A are equal then $\mathcal{A}(A)$ consists of n! matrices. Denote by d(A) the number of different main diagonals of the matrices in $\mathcal{A}(A)$. Determine $d(n) = \max\{d(A) : A \in \mathcal{A}_n\}$.

Note that the total number of main diagonals (with entries 0 and 1) is 2^n , which is much smaller than n!, so there is no obvious reason why we could not obtain all 2^n diagonals. For example, if the three rows of our 3×3 matrix are 111, 101 and 001, then the diagonals are 101 (if 111 is kept as the first row), 111, 011 and 001 (for the other orders).

32. (Tromino and Tetronimo Tilings) An $m \times n$ board is an $m \times n$ rectangle made up of mn unit squares called cells; a *deficient* $m \times n$ board $m \times n$ board from which a cell has been removed. A *tromino* is the union of three cells sharing a vertex, and a T-*tetromino* is the union of four cells in the shape of a

7

8

The Problems

Figure 4 A tromino tiling of a deficient 4×4 board, and a T-tetromino tiling of a 4×8 board.

letter T. We are interested in tilings of a deficient $n \times n$ board by trominoes and an $m \times n$ board by T-tetrominoes, as in Figure 4.

(i) Show that if *n* is a power of 2 then every deficient $n \times n$ board can be tiled with trominoes.

(ii) Show that if an $m \times n$ rectangle can be tiled with T-tetrominoes then mn is divisible by 8.

33. (Tromino Tilings of Rectangles) For what values of *m* and *n* can an $m \times n$ rectangle be tiled with trominoes, as in Figure 5? [A tromino is a 2×2 square with one quarter cut off, as in Problem 32.]

Figure 5 Tromino tilings of a 3×2 board and a 5×9 board.

34. (Number of Matrices) What is the number of $n \times n$ matrices with non-negative integer entries, in which every row and column has at most three non-zero entries, these non-zero entries are different, and their sum is 7? An example of such a matrix is

1	(0)	1	0	2	4)
	5	0	2	0	0
	0	0	4	0	3
	0	6	0	1	0
	2	0	1	4	0)

35. (Halving Circles) Let *S* be a set of $2n + 1 \ge 5$ points in the plane in general position. In this context, being in 'general position' means that no three

points are on a line and no four points are on a circle. We say that a circle Chalves S if three points of S are on C, n - 1 inside C and so n - 1 outside C. Show that there are at least n(2n + 1)/3 halving circles.

36. (The Number of Halving Circles) Continuing the previous problem, show that for every $n \ge 1$ there is a set of 2n + 1 points in general position in the plane with exactly n^2 halving circles.

37. (A Basic Identity of Binomial Coefficients) Let f(X) be a polynomial of degree less than n. Show that

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} f(k) = 0.$$

38. (**A Simple Sum?**) Put the sum

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (x-i)^{n}$$

into a much simpler form.

39. (Dixon's Identity – Take One) We shall use the convention that 0! = 1and 1/k! = 0 for k < 0. Let a, b, c be non-negative integers. Show that

$$\sum_{k} \frac{(-1)^{k}(a+b)!(b+c)!(c+a)!}{(a+k)!(a-k)!(b+k)!(b-k)!(c+k)!(c-k)!} = \frac{(a+b+c)!}{a!b!c!}.$$

On the left-hand side, the summation is over all integers k; equivalently, we may take the sum $\sum_{d \le k \le d}$, where $d = \min\{a, b, c\}$.

40. (Dixon's Identity – Take Two) (i) Let *m* and *n* be non-negative integers, and write X for a variable. Prove the following identity of polynomials with real coefficients:

$$\sum_{k=0}^{2n} (-1)^k \binom{m+2n}{m+k} \binom{X}{k} \binom{X+m}{m+2n-k} = (-1)^n \binom{X}{n} \binom{X+m+n}{m+n}.$$

Here and elsewhere, for a polynomial f(X) over the reals and a non-negative integer ℓ , we write

$$\binom{f(X)}{\ell} = f(X)(f(X) - 1)(f(X) - 2)\dots(f(X) - \ell + 1).$$

In particular, $\binom{f(X)}{0} = 1$, and if ℓ is a negative integer then $\binom{f(X)}{\ell} = 0$. (ii) Deduce that if a, b and c are non-negative integers and, say, $b \le a, c$, then

$$\sum_{k=-b}^{b} (-1)^k \binom{a+b}{a+k} \binom{b+c}{b+k} \binom{c+a}{c+k} = \frac{(a+b+c)!}{a!b!c!}.$$

10

The Problems

41. (An Unusual Inequality) Let $x_0 = 0 < x_1 < x_2 < \cdots$. Show that

$$\sum_{n=1}^{\infty} \frac{x_n - x_{n-1}}{x_n^2 + 1} < \frac{\pi}{2}.$$

42. (Hilbert's Inequality) Let $(a_n)_1^{\infty}$ and $(b_n)_1^{\infty}$ be square-summable sequences of real numbers: $\sum_n a_n^2 < \infty$ and $\sum_n b_n^2 < \infty$. Show that

$$\sum_{m,n} \frac{a_m b_n}{m+n} < \pi \sqrt{\sum_m a_m^2} \sqrt{\sum_n b_n^2}.$$

43. (The Size of the Central Binomial Coefficient) Let $k \ge 1$ be an integer and c, d > 0 positive real numbers such that

$$\frac{c}{\sqrt{k-1/2}} 4^k \le \binom{2k}{k} \le \frac{d}{\sqrt{k+1/2}} 4^k.$$

Show that then the analogous inequalities hold for all $n \ge k$:

$$\frac{c}{\sqrt{n-1/2}} 4^n \le \binom{2n}{n} \le \frac{d}{\sqrt{n+1/2}} 4^n$$

whenever $n \ge k$. In particular,

$$\binom{2n}{n} < \begin{cases} 2^{2n-1} & \text{if } n \ge 2, \\ 2^{2n-2} & \text{if } n \ge 5, \end{cases}$$

and

$$\frac{0.5}{\sqrt{n-1/2}} 4^n \le \binom{2n}{n} \le \frac{0.6}{\sqrt{n+1/2}} 4^n$$

for $n \ge 4$.

44. (**Properties of the Central Binomial Coefficient**) Consider the prime factorization of the central binomial coefficient $\binom{2n}{n}$ for $n \ge 1$:

$$\binom{2n}{n} = \prod_{p < 2n} p^{\alpha_p}$$

where p denotes a prime. Show the following assertions:

- (i) $\alpha_p = 0 \text{ or } 1 \text{ if } \sqrt{2n}$
- (ii) $\alpha_p = 0$ if 2n/3 ;
- (iii) $p^{\alpha_p} \leq 2n$ for every p.