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The Problems

1. (Real Sequences) (i) At most how many real numbers can be chosen

from the open interval (0,2n + 1) if none is at distance less than 1 from an

integer multiple of another? To spell it out, let n ≥ 1 be a fixed natural number.

Suppose that 0 < x1 < · · · < xN < 2n + 1 are such that |k xi − xj | ≥ 1 for all

natural numbers i, j and k with 1 ≤ i < j ≤ N . At most how large is N?

(ii) At most how many real numbers can be chosen from the open interval

(0, (3n + 1)/2) = (0,3n/2 + 1/2) if none is at distance less than 1 from an odd

multiple of another?

2. (Vulgar Fractions) Show that every rational number r , 0 < r < 1, is the

sum of a finite number of reciprocals of distinct natural numbers. For example,

4699

7320
=

1

2
+

1

8
+

1

60
+

1

3660
.

3. (Rational and Irrational Sums) Let 2 ≤ n1 < n2 < · · · be a sequence

of positive integers such that

ni+1 ≥ ni(ni − 1) + 1

for every i ≥ 1, and set

r =

∞∑
i=1

1

ni
.

Show that r is rational if and only if ni+1 = ni(ni − 1) + 1 for all but finitely

many values of i.

4. (Ships in Fog) Five ships, A, B, C, D and E are sailing in a fog with

constant and different speeds, and constant and different straight-line courses,

with different directions. The seven pairs AB, AC, AD, BC, BD, CE and DE
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2 The Problems

have each had near misses, call them ‘collisions’. Does it follow that, in addition,

E collides with either A or B? Maybe both? And does C collide with D?

5. (A Family of Intersections) For 0 < p < 1, a p-random subset X = Xp

of [n] = {1,2, . . . ,n} is obtained by taking n independent binomial random

variables ξ1, ξ2, . . . , ξn with P(ξi = 1) = p = 1 − P(ξi = 0), and setting

Xp = {i : ξi = 1}. The probability measure Pp on Pn, the set of all 2n subsets

of [n], is given by

Pp(A) = P(Xp = A) = p |A | (1 − p)n−|A|,

so that the probability of a family A ⊂ Pn is

Pp(A) =
∑
A∈A
Pp(A) =

∑
A∈A

p |A | (1 − p)n−|A| .

Let A ⊂ Pn have p-probability r : Pp(A) = r , and define

J = J(A) = {A ∩ B : A,B ∈ A}.

Show that

Pp2 (J) ≥ r2.

6. (The Basel Problem) Forget for a moment the mathematical rigour we

have to have in our proofs, and give a beautiful solution of the famous ‘Basel

Problem’: prove that

∞∑
k=1

1/k2
= 1 +

1

4
+

1

9
+

1

16
· · · = π2/6.

7. (Reciprocals of Primes) Give three proofs of the theorem that the sum

of reciprocals of the primes is divergent:
∑

p 1/p = ∞, where the summation

is over the primes.

8. (Reciprocals of Integers) Let 1 < n1 < n2 < · · · be a sequence of natural

numbers such that
∑∞

i=1 1/ni < ∞. Show that the set

M = M(n1,n2, . . . ) = {n
α1

1
. . . n

αk

k
: αi ≥ 0}

has zero density, i.e. if ε > 0 and n is large enough (depending on ε) then there

are at most εn elements of M that are at most n.

9. (Completing Matrices) For 1 ≤ k < n, let Ak ,n be the collection of n×n

matrices with each entry zero or one, having precisely k ones in each row and

each column. Show that for 1 ≤ r < n an r × n matrix of zeros and ones has an

extension to a matrix in Ak ,n if and only if each row has precisely k ones, and

in each column there are at least k + r − n and at most k ones.
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The Problems 3

10. (Convex Polyhedra – Take One) Is there a convex polyhedron which

contains a point whose perpendicular projection on the plane of every face falls

outside the face? And just fails to fall in the interior of the face?

11. (Convex Polyhedra – Take Two) Show that every 3-dimensional poly-

hedron with at least thirteen faces has a face meeting at least six other faces.

Two faces are said to meet if they share a vertex or an edge.

12. (A Very Old Tripos Problem) Let p, q and r be complex numbers with

pq � r . Transform the cubic x3 − px2
+ qx − r = 0, where the roots are a, b, c,

into one whose roots are 1
a+b

, 1
a+c

, 1
b+c

.

13. (Angle Bisectors) Show that if two (internal) angle bisectors of a triangle

are equal then the angles themselves are also equal.

14. (Chasing Angles – Take One) Let ABC be an isosceles triangle with

angle 20◦ at the apex A. Let D be a point on AB and E a point on AC such that

∠BCD = 50◦ and ∠CBE = 60◦, as in Figure 1. What is the angle ∠BED?

E

D

B C

A

30

5060

20

20

Figure 1 Adventitious angles
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4 The Problems

15. (Chasing Angles – Take Two) Let ABC be an isosceles triangle with

angle 20◦ at the apex A and so angles 80◦ at the base; furthermore, let D

be a point on the side AB such that CD = 10◦, and E on AC such that

BE = 20◦, as in Figure 2. Use entirely elementary methods, without any

recourse to trigonometry, to determine the angle DE .

E

D

B C

A

60 70

20 10

20

Figure 2 Information about our points

16. (Pythagorean Triples) We call a triple (a, b, c) of natural numbers a

Pythagorean triple if a2
+b2
= c2. Also, a Pythagorean triple (a, b, c) is primitive

or relatively prime if a, b and c do not have a common divisor (greater than 1).

Clearly, every Pythagorean triple is a multiple of a primitive Pythagorean triple.

Also, if (a, b, c) is a primitive Pythagorean triple then a and b have opposite

parities since if both of them are odd then the sum of their squares is 2 modulo

4, so it cannot be a square, and if both of them are even then the sum of their

squares is also even, so c also has to be even. Usually we take a to be odd and

b even.

Show that (a, b, c) is a primitive Pythagorean triple with a odd and b even
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if and only if there are relatively prime numbers u > v ≥ 1 of opposite parity

such that a = u2 − v
2, b = 2uv and c = u2

+ v
2. Even more, give two proofs,

one algebraic and the other geometric.

17. (Fermat’s Theorem for Fourth Powers) Show that the equation a4
+

b4
= c4 has no solutions in natural numbers. Putting it slightly differently: if a

and b are strictly positive integers then a4
+ b4 cannot be a fourth power.

18. (Congruent Numbers) A natural number n is said to be congruent if

there is a right-angled triangle with rational sides, whose area is n. For example,

the right-angled triangle with sides 3, 4 and 5 tells us that 6 is congruent. Show

that 1 is not a congruent number.

19. (A Rational Sum) Find a necessary and sufficient condition for a rational

number s > 1 that ensures that
√

s + 1 −
√

s − 1 is also rational, where
√ ·

denotes the positive square root.

20. (A Quartic Equation) Find a large family of integer solutions of

A4
+ B4

= C4
+ D4. (1)

More precisely, look for fairly general polynomials A, B, C and D in Z[a, b]
such that (1) holds. To this end, look for the solution in the form

A = ax + c, B = bx − d,

C = ax + d, D = bx + c

where a, b, c, d and x are rational numbers. Considering a, b, c and d constant,

(1) holds if x satisfies a quartic whose first and last coefficients are 0. Show

that with a suitable choice of a, b, c and d the coefficient of x3 is also 0, and

use this to find our polynomials.

21. (Regular Polygons) Show that, of all polygons of the same number of

sides and equal perimeter length, the regular polygon has the greatest area.

22. (Flexible Polygons) Consider all polygons with given sides but one in

a given cyclic order. Show that if the area of such a polygon is maximal then

it may have a circle circumscribed about it, having the unknown side for a

diameter of the circle.

23. (Polygons of Maximal Area) Show that the area of a polygon with

given sides is not larger than the cyclic polygon with these sides, i.e. the one

that may have a circle circumscribed about it. The reader is invited to find

several solutions of this problem.
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24. (Constructing
3
√

2) Let OS1PS2 be a 2m × m rectangle with OS1 = PS2

of length 2m and OS2 = PS1 of length m. Let C be the circle through the

vertices O, S1, P and S2, and let Q be the point of the PS2 arc of C such that

the line through P and Q meets the (extended) lines OS1 and OS2 in R1 and R2,

and the segments PR1 and QR2 have the same length. Finally, let T1 and T2 be

the projections of Q on the segments OR1 and OR2. Show that OT1 has length
3
√

2m.

25. (Circumscribed Quadrilaterals) Let ABCD be a quadrilateral circum-

scribed about a circle with centre O. Let E and F be the midpoints of the

O F
E

D

C

BA

Figure 3 A quadrilateral circumscribed about a circle with centre O; the points E

and F are the midpoints of the diagonals AC and BD.

diagonals AC and BD, as in Figure 3. Show that E , F and O are collinear.

26. (Partitions of Integers) A partition of an integer n is a sequence λ =

(λ1, . . . , λk) of positive integers λ1 ≥ · · · ≥ λk ≥ 1 whose sum is n. This

partition is also written as λ1 + · · · + λk . Each λi is a summand or part; the

number of parts, k, is the length of the partition λ. As customary, we shall write

p(n) for the partition function, the number of partitions of n ≥ 1. Note that 4

has five partitions: 4, 3+ 1, 2+ 2, 2+ 1+ 1, 1+ 1+ 1+ 1, so p(4) = 5, and 5 has

seven partitions: 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1,

so p(5) = 7. Also, p(0) = 1: the only partition of 0 is the empty partition.

(i) Show that the formal power series
∑∞

n=0 p(n)xn, called the generating

function of p(n), is

(1 + x + x2
+ x3

+ · · · )(1 + x2
+ x4

+ x6
+ · · · )(1 + x3

+ x6
+ x9

+ · · · ) · · · ,

i.e.

1

1 − x
· 1

1 − x2
· 1

1 − x3
· · · .

(ii) Give three proofs of the assertion that the number of partitions of n
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The Problems 7

without 1 as a part is p(n) − p(n − 1). For example, 5 has two partitions not

containing 1, namely 5 and 3 + 2, and p(5) − p(4) = 7 − 5 = 2.

27. (Parts Divisible by m and 2m) Show that the number of partitions of n

in which no multiple of m is repeated is equal to the number of partitions of n

without a multiple of 2m.

28. (Unequal vs Odd Partitions) (i) Show that the number of partitions of

n into unequal parts is equal to the number of partitions into odd parts.

(ii) Let m ≥ 1. Show that the number of partitions of n in which no part is

repeated more than m times is equal to the number of partitions in which no

part is a multiple of m + 1.

29. (Sparse Bases) A set S of natural numbers has density zero if S(n) tends

to zero as n tends to infinity, where S(n) is the number of elements of S not

greater than n.

Show that there is a set S ⊂ N of density zero such that every positive rational

is the sum of a finite number of reciprocals of distinct terms of S.

30. (Sets with Small Pairwise Intersections) Let A1, . . . , Am ∈ [n](r), i.e. let

A1, . . . , Am be r-subsets of [n] = {1, . . . ,n}. Show that if |Ai ∩ Aj | ≤ s < r2/n

for all 1 ≤ i < j ≤ m, then m ≤ n(r − s)/(r2 − sn).
Show also that if r2/n is an integer and |Ai∩Aj | < r2/n for all 1 ≤ i < j ≤ m,

then m ≤ r − r2/n + 1 ≤ n/4 + 1.

31. (The Diagonals of Zero–One Matrices) Given n ≥ 1, let An be the

set of all n × n matrices with each entry 0 or 1. For A ∈ An, write A(A)
for the set of matrices obtained from A by permuting its rows. Thus if no

two rows of A are equal then A(A) consists of n! matrices. Denote by d(A)
the number of different main diagonals of the matrices in A(A). Determine

d(n) = max{d(A) : A ∈ An}.

Note that the total number of main diagonals (with entries 0 and 1) is 2n,

which is much smaller than n!, so there is no obvious reason why we could not

obtain all 2n diagonals. For example, if the three rows of our 3 × 3 matrix are

111, 101 and 001, then the diagonals are 101 (if 111 is kept as the first row),

111, 011 and 001 (for the other orders).

32. (Tromino and Tetronimo Tilings) An m×n board is an m×n rectangle

made up of mn unit squares called cells; a deficient m × n board m × n board

from which a cell has been removed. A tromino is the union of three cells

sharing a vertex, and a T-tetromino is the union of four cells in the shape of a
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8 The Problems

Figure 4 A tromino tiling of a deficient 4 × 4 board, and a T-tetromino tiling of a

4 × 8 board.

letter T. We are interested in tilings of a deficient n× n board by trominoes and

an m × n board by T-tetrominoes, as in Figure 4.

(i) Show that if n is a power of 2 then every deficient n × n board can be tiled

with trominoes.

(ii) Show that if an m × n rectangle can be tiled with T-tetrominoes then mn is

divisible by 8.

33. (Tromino Tilings of Rectangles) For what values of m and n can an

m × n rectangle be tiled with trominoes, as in Figure 5? [A tromino is a 2 × 2

square with one quarter cut off, as in Problem 32.]

Figure 5 Tromino tilings of a 3 × 2 board and a 5 × 9 board.

34. (Number of Matrices) What is the number of n × n matrices with

non-negative integer entries, in which every row and column has at most three

non-zero entries, these non-zero entries are different, and their sum is 7? An

example of such a matrix is

��������

0 1 0 2 4

5 0 2 0 0

0 0 4 0 3

0 6 0 1 0

2 0 1 4 0

�������	
35. (Halving Circles) Let S be a set of 2n + 1 ≥ 5 points in the plane in

general position. In this context, being in ‘general position’ means that no three
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points are on a line and no four points are on a circle. We say that a circle C

halves S if three points of S are on C, n − 1 inside C and so n − 1 outside C.

Show that there are at least n(2n + 1)/3 halving circles.

36. (The Number of Halving Circles) Continuing the previous problem,

show that for every n ≥ 1 there is a set of 2n + 1 points in general position in

the plane with exactly n2 halving circles.

37. (A Basic Identity of Binomial Coefficients) Let f (X) be a polynomial

of degree less than n. Show that

n∑
k=0

(−1)k
(
n

k

)
f (k) = 0.

38. (A Simple Sum?) Put the sum

n∑
i=0

(−1)i
(
n

i

)
(x − i)n

into a much simpler form.

39. (Dixon’s Identity – Take One) We shall use the convention that 0! = 1

and 1/k! = 0 for k < 0. Let a, b, c be non-negative integers. Show that∑
k

(−1)k(a + b)!(b + c)!(c + a)!
(a + k)!(a − k)!(b + k)!(b − k)!(c + k)!(c − k)! =

(a + b + c)!
a!b!c!

.

On the left-hand side, the summation is over all integers k; equivalently, we

may take the sum
∑

−d≤k≤d , where d = min{a, b, c}.

40. (Dixon’s Identity – Take Two) (i) Let m and n be non-negative integers,

and write X for a variable. Prove the following identity of polynomials with

real coefficients:

2n∑
k=0

(−1)k
(
m + 2n

m + k

) (
X

k

) (
X + m

m + 2n − k

)
= (−1)n

(
X

n

) (
X + m + n

m + n

)
.

Here and elsewhere, for a polynomial f (X) over the reals and a non-negative

integer ℓ, we write(
f (X)
ℓ

)
= f (X)( f (X) − 1)( f (X) − 2) . . . ( f (X) − ℓ + 1).

In particular,
( f (X)

0

)
= 1, and if ℓ is a negative integer then

( f (X)
ℓ

)
= 0.

(ii) Deduce that if a, b and c are non-negative integers and, say, b ≤ a, c, then

b∑
k=−b

(−1)k
(
a + b

a + k

) (
b + c

b + k

) (
c + a

c + k

)
=

(a + b + c)!
a!b!c!

.
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41. (An Unusual Inequality) Let x0 = 0 < x1 < x2 < · · · . Show that

∞∑
n=1

xn − xn−1

x2
n + 1

<
π

2
.

42. (Hilbert’s Inequality) Let (an)∞1 and (bn)∞1 be square-summable se-

quences of real numbers:
∑

n a2
n < ∞ and

∑
n b2

n < ∞. Show that

∑
m,n

ambn

m + n
< π

√∑
m

a2
m

√∑
n

b2
n.

43. (The Size of the Central Binomial Coefficient) Let k ≥ 1 be an integer

and c, d > 0 positive real numbers such that

c√
k − 1/2

4k ≤
(
2k

k

)
≤ d√

k + 1/2
4k .

Show that then the analogous inequalities hold for all n ≥ k:

c√
n − 1/2

4n ≤
(
2n

n

)
≤ d√

n + 1/2
4n

whenever n ≥ k. In particular,

(
2n

n

)
<

{
22n−1 if n ≥ 2,

22n−2 if n ≥ 5,

and

0.5√
n − 1/2

4n ≤
(
2n

n

)
≤ 0.6√

n + 1/2
4n

for n ≥ 4.

44. (Properties of the Central Binomial Coefficient) Consider the prime

factorization of the central binomial coefficient
(2n
n

)
for n ≥ 1:(

2n

n

)
=

∏
p<2n

pαp ,

where p denotes a prime. Show the following assertions:

(i) αp = 0 or 1 if
√

2n < p < 2n;

(ii) αp = 0 if 2n/3 < p ≤ n;

(iii) pαp ≤ 2n for every p.

www.cambridge.org/9781108833271
www.cambridge.org

