The Cambridge Handbook of Dyslexia and Dyscalculia

In this handbook, the world’s leading researchers answer fundamental questions about dyslexia and dyscalculia based on authoritative reviews of the scientific literature. It provides an overview from the basic science foundations to best practice in schooling and educational policy, covering research topics ranging from genes, environments, and cognition to prevention, intervention, and educational practice. With clear explanations of scientific concepts, research methods, statistical models, and technical terms within a cross-cultural perspective, this book will be a go-to reference for researchers, instructors, students, policymakers, educators, teachers, therapists, psychologists, physicians, and those affected by learning difficulties.

Michael A. Skeide is a research group leader at the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
The Cambridge Handbook of Dyslexia and Dyscalculia

Edited by
Michael A. Skeide
Max Planck Institute for Human Cognitive and Brain Sciences
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures and Tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>x</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xiv</td>
</tr>
<tr>
<td>General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Part I Theoretical Frameworks and Computational Models</td>
<td>3</td>
</tr>
<tr>
<td>1 Theories of Dyslexia</td>
<td>5</td>
</tr>
<tr>
<td>Usha Goswami</td>
<td></td>
</tr>
<tr>
<td>2 Theories of Dyscalculia</td>
<td>25</td>
</tr>
<tr>
<td>Vinod Menon and Hyesang Chang</td>
<td></td>
</tr>
<tr>
<td>3 Computational Models of Reading and Mathematical Difficulties</td>
<td>45</td>
</tr>
<tr>
<td>Marco Zorzi and Alberto Testolin</td>
<td></td>
</tr>
<tr>
<td>Summary: Theoretical Frameworks and Computational Models</td>
<td>61</td>
</tr>
<tr>
<td>Part II Cognitive Profiles and Behavioural Manifestations</td>
<td>63</td>
</tr>
<tr>
<td>4 Cognitive Profiles and Co-occurrence of Dyslexia and Dyscalculia</td>
<td>65</td>
</tr>
<tr>
<td>Chiara Banfi, Karin Landerl, and Kristina Moll</td>
<td></td>
</tr>
<tr>
<td>5 Reading and Mathematics Anxiety</td>
<td>83</td>
</tr>
<tr>
<td>Dénes Szűcs</td>
<td></td>
</tr>
<tr>
<td>Summary: Cognitive Profiles and Behavioural Manifestations</td>
<td>98</td>
</tr>
<tr>
<td>Part III Genetic and Environmental Influences</td>
<td>99</td>
</tr>
<tr>
<td>6 Genetic and Environmental Influences on Dyslexia and Dyscalculia</td>
<td>101</td>
</tr>
<tr>
<td>Margherita Malanchini and Agnieszka Gidziela</td>
<td></td>
</tr>
</tbody>
</table>
Contents

7 Pre- and Postnatal Environmental Effects on Learning to Read and Mathematical Learning
FUMIKO HOeft* AND FLORENCE BOUHALI*

Summary: Genetic and Environmental Influences

Part IV Neurodevelopmental Foundations

8 Neurogenetic Insights into the Origins of Dyslexia and Dyscalculia
MICHAEL A. SKEIDE

9 Longitudinal Neural Observation Studies of Dyslexia
GORKA FRAGA GONZÁLEZ, KATARZYNA JEDNORÓG, AND SILVIA BREM

10 Longitudinal Neural Observation Studies of Dyscalculia
KARIN KUCIAN AND URSINA MCCASKEY

11 Neuroplasticity in Response to Reading Intervention
JASON D. YEATMAN

12 Neuroplasticity in Response to Mathematical Intervention
TERESA IUCULANO

Summary: Neurodevelopmental Foundations

Part V Gender, Ethnicity, and Socioeconomic Background

13 Gender and Sex Differences in Dyslexia and Dyscalculia
JESSICA F. CANTLON

14 The Role of Socioeconomic and Ethnic Disparities for Dyslexia and Dyscalculia
RACHEL ELIZABETH FISH

Summary: Gender, Ethnicity, and Socioeconomic Background

Part VI Cultural Unity and Diversity

15 Cross-Cultural Unity and Diversity of Dyslexia
WAJ TING SIOK AND LANG QIN

16 Cross-Cultural Unity and Diversity of Dyscalculia
BAIHAN LYU AND XINLIN ZHOU

Summary: Cultural Unity and Diversity

Part VII Early Prediction

17 Early Prediction of Learning Outcomes in Reading
ARNE LERVÅG AND MONICA MELBY-LERVÅG
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Early Prediction of Learning Outcomes in Mathematics</td>
<td>Elizabeth A. Gunderson</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>Summary: Early Prediction</td>
<td></td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Part VIII Intervention and Compensation</td>
<td></td>
<td>335</td>
</tr>
<tr>
<td>19</td>
<td>Randomized Controlled Trials in Dyslexia and Dyscalculia</td>
<td>Katharina Galuschka and Gerd Schulte-Körne</td>
<td>337</td>
</tr>
<tr>
<td>20</td>
<td>Cognitive Enhancement and Brain Stimulation in Dyslexia and</td>
<td>Nienke E. R. van Bueren, Evelyn H. Kroesbergen,</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Dyscalculia</td>
<td>and Roë Cohen Kadosh</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Persistence and Fade-Out of Responses to Reading and</td>
<td>H. Moriah Sokolowski and Lien Peters</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>Mathematical Interventions</td>
<td></td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>Summary: Intervention and Compensation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part IX Best Practice – Diagnostics and Prevention</td>
<td></td>
<td>381</td>
</tr>
<tr>
<td>22</td>
<td>Diagnosis of Dyslexia and Dyscalculia: Challenges and</td>
<td>Thomas Lachmann, Kirstin Bergström, Julia Huber,</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>Controversies</td>
<td>and Hans-Christoph Nuerk</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Prevention of Dyslexia and Dyscalculia: Best Practice and</td>
<td>Marcus Hasselhorn and Wolfgang Schneider</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>Policy in Early Education</td>
<td></td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>Summary: Best Practice – Diagnostics and Prevention</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part X Best Practice – Schooling and Educational Policy</td>
<td></td>
<td>425</td>
</tr>
<tr>
<td>24</td>
<td>Dyslexia and the Dyslexia-Like Picture: Supporting All Children</td>
<td>Sonali Nag</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>in Primary School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Best Practice and Policy in Maths Education in School</td>
<td>Antje Ehlert and Luisa Wagner</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td>Summary: Best Practice – Schooling and Educational Policy</td>
<td></td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>General Summary</td>
<td></td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
<td>611</td>
</tr>
</tbody>
</table>

© 2023 in this web service Cambridge University Press & Assessment
Figures and Tables

Figures
1.1 Schematic depiction of key neural, sensory, and cognitive factors in learning to read, highlighting the core factors selected by different theories. page 7
1.2 Schematic depiction of key issues to consider when testing the evidence base for different theories of developmental dyslexia. 8
2.1 Neurocognitive model of numerical cognition. 29
2.2 Neurobiological basis of dyscalculia: evidence for a ‘hybrid’ multicomponent deficit model. 33
3.1 Learning to read and dyslexia in the dCDP model. 52
3.2 (A) Architecture of a deep learning model that simulates numerosity perception. (B) Developmental simulations of number acuity, as measured by the progressive refinement of the Weber fraction (just noticeable difference in numerosity). 58
6.1 The continuum of reading ability. 104
7.1 Key perinatal factors that have been shown to impact reading and mathematics outcomes described in this chapter. 117
9.1 (A) Development of the main functional brain systems for audiovisual letter–sound integration and visual sensitivity to orthography. (B) Illustration of the main white matter tracts forming the dorsal and ventral routes for reading. 164
10.1 Neural network of numerical cognition. 184
13.1 Typical effect sizes of gender differences in reading and mathematics. 234
20.1 Overview of brain stimulation studies of dyslexia and dyscalculia. 354
21.1 Schematic illustration of fade-out following an intervention. 365
21.2 Schematic illustration of examples of fade-out following an intervention. 375
22.1 Multiple-level framework for developmental learning disorders. 386

Tables
16.1 Summary of prevalences of dyscalculia across different cultures. 284
16.2 Summary of functional imaging studies of dyscalculia across different cultures. 289
<table>
<thead>
<tr>
<th>List of Figures and Tables ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3 Summary of structural imaging studies of dyscalculia across different cultures. 291</td>
</tr>
<tr>
<td>16.4 Summary of dyscalculia intervention studies across different cultures. 294</td>
</tr>
</tbody>
</table>
Contributors

Part I Theoretical Frameworks and Computational Models

USHA GOSWAMI, Professor of Cognitive Developmental Neuroscience
University of Cambridge, United Kingdom

VINOD MENON, Professor of Psychiatry and Behavioral Sciences and Professor of Neurology
Stanford University, USA

HYESANG CHANG, Postdoctoral Researcher
Stanford University, USA

MARCO ZORZI, Professor of Cognitive and Computational Neuroscience
University of Padova, Italy and IRCCS San Camillo Hospital, Venice, Italy

ALBERTO TESTOLIN, Assistant Professor of Cognitive Neuroscience and Information Engineering
University of Padova, Italy

Part II Cognitive Profiles and Behavioural Manifestations

CHIARA BANFI, Postdoctoral Researcher
University of Graz, Austria

KARIN LANDERL, Professor of Developmental Psychology
University of Graz, Austria

KRISTINA MOLL, Research Scientist
Ludwig-Maximilians-University Hospital Munich, Germany

DÉNÉS SZŰCS, Associate Professor of Cognitive Neuroscience and Psychology
University of Cambridge, United Kingdom
Part III Genetic and Environmental Influences

Margherita Malanchini, Assistant Professor of Psychology
Queen Mary University of London, United Kingdom

Agnieszka Gidziela, PhD student
Queen Mary University of London, United Kingdom

Florence Bouhali, Postdoctoral Researcher
University of California, San Francisco, USA

Fumiko Hoeft, Professor of Psychological Sciences, Neuroscience, Mathematics, Computer Science and Engineering, Psychiatry, Pediatrics and Educational Psychology
University of Connecticut, USA

Part IV Neurodevelopmental Foundations

Michael A. Skeide, Research Group Leader
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Gorka Fraga González, Postdoctoral Researcher
University of Zurich, Switzerland

Katarzyna Jednoróg, Associate Professor of Language Neurobiology
Nencki Institute of Experimental Biology, Warsaw, Poland

Silvia Brem, Assistant Professor of Child and Adolescent Psychiatry and Psychotherapy
University of Zurich, Switzerland

Karin Kucian, Habilitated Scientist of Developmental Pediatrics
University Children’s Hospital Zurich, University of Zurich, Switzerland

Ursina McCaskey, Postdoctoral Researcher
University Children’s Hospital Zurich, University of Zurich, Switzerland

Jason D. Yeatman, Assistant Professor of Education and Assistant Professor of Pediatrics
Stanford University, USA

Teresa Iuculano, Associate Research Professor
Université Paris Cité, La Sorbonne and Centre National de la Recherche Scientifique, Paris, France
xii List of Contributors

Part V Gender, Ethnicity, and Socioeconomic Background

JESSICA F. CANTLON, Professor of Developmental Neuroscience
Carnegie Mellon University, USA

RACHEL E. FISH, Assistant Professor of Special Education
New York University, USA

Part VI Cultural Unity and Diversity

WAI TING SIOK, Associate Professor of Linguistics
University of Hong Kong

LANG QIN, Postdoctoral Researcher
Peking University, China

BAIHAN LYU, Research Assistant
Beijing Normal University, China

XINLIN ZHOU, Professor of Psychology
Beijing Normal University, China

Part VII Early Prediction

ARNE O. LERVÅG, Professor of Education
University of Oslo, Norway

MONICA MELBY-LERVÅG, Professor of Special Education
University of Oslo, Norway

ELIZABETH A. GUNDERSON, Associate Professor of Psychology
Temple University, USA

Part VIII Intervention and Compensation

KATHARINA GALUSCHKA, Postdoctoral Researcher
German Youth Institute, Munich, Germany

GERD SCHULTE-KÖRNE, Professor of Child and Adolescent Psychiatry and Psychotherapy
Ludwig-Maximilians University of Munich, Germany

NIENKE E. R. VAN BUEREN, PhD Student
Radboud University, Behavioural Science Institute, Nijmegen, Netherlands
EVELYN H. KROESBERGEN, Professor of Learning and Development
Radboud University, Behavioural Science Institute, Nijmegen, Netherlands

ROI COHEN KADOSH, Professor of Cognitive Neuroscience
University of Oxford, United Kingdom

H. MORIAH SOKOLOWSKI, Postdoctoral Researcher
Rotman Research Institute, Toronto, Canada

LIEN PETERS, Postdoctoral Researcher
University of Western Ontario, London, Canada

Part IX Best Practice: Diagnostics and Prevention

THOMAS LACHMANN, Professor of Cognitive and Developmental Psychology
University of Kaiserslautern, Germany and Universidad Nebrija, Centro de Investigación Nebrija en Cognición, Madrid, Spain

KIRSTIN BERGSTRÖM, Postdoctoral Researcher
University of Kaiserslautern, Germany

JULIA HUBER, Postdoctoral Researcher
University of Tübingen, Germany

HANS-CHRISTOPH NUERK, Professor of Diagnostics and Cognitive Neuropsychology
University of Tübingen, Germany

MARCUS HASSELHORN, Professor of Psychology, Education and Human Development
DIPF | Leibniz Institute for Research and Information in Education, Frankfurt, Germany

WOLFGANG SCHNEIDER, Emeritus Professor of Educational Psychology
University of Würzburg, Germany

Part X Best Practice: Schooling and Educational Policy

SONALI NAG, Professor of Education and the Developing Child
University of Oxford, United Kingdom

ANTJE EHLERT, Professor of Inclusive Education
University of Potsdam, Germany

LUISA WAGNER, PhD Student
University of Potsdam, Germany
Acknowledgements

The editor would like to thank . . .
 . . . all authors for their excellent contributions to this book and their tremendous team effort;
 . . . Cambridge University Press editor Stephen Acerra (New York) for triggering the idea for this book project during the 2020 Cognitive Neuroscience Society Annual Meeting;
 . . . former Cambridge University Press senior editorial assistant Emily Watton and her administrative assistant Santosh Laxmi Kota for their administrative support; Helen Cooper and Richards Paul at Integra Software Services for copy-editing and typesetting; and Cambridge University Press Senior Content Manager Ruth Boyes for overseeing the publication process.
 . . . the SkeideLab members for their help with the thorough scientific evaluation of the submitted contributions; in particular our research assistant Rafael Vinz for his hard work on the bibliography and his creative work on the cover art.