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Introduction

This book was born of research in category theory, brought to life by the on-

going vigorous debate on how to quantify biological diversity, given strength

by information theory, and fed by the ancient field of functional equations. It

applies the power of the axiomatic method to a biological problem of pressing

concern, but it also presents new advances in ‘pure’ mathematics that stand in

their own right, independently of any application.

The starting point is the connection between diversity and entropy. We will

discover:

• how Shannon entropy, originally defined for communications engineering,

can also be understood through biological diversity (Chapter 2);

• how deformations of Shannon entropy express a spectrum of viewpoints on

the meaning of biodiversity (Chapter 4);

• how these deformations provably provide the only reasonable abundance-

based measures of diversity (Chapter 7);

• how to derive such results from characterization theorems for the power

means, of which we prove several, some new (Chapters 5 and 9).

Complementing the classical techniques of these proofs is a large-scale cate-

gorical programme, which has produced both new mathematics and new mea-

sures of diversity now used in scientific applications. For example, we will

find:

• that many invariants of size from across the breadth of mathematics (includ-

ing cardinality, volume, surface area, fractional dimension, and both topo-

logical and algebraic notions of Euler characteristic) arise from one single

invariant, defined in the wide generality of enriched categories (Chapter 6);

• a way of measuring diversity that reflects not only the varying abundances of
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2 Introduction

species (as is traditional), but also the varying similarities between them, or,

more generally, any notion of the values of the species (Chapters 6 and 7);

• that these diversity measures belong to the extended family of measures of

size (Chapter 6);

• a ‘best of all possible worlds’, an abundance distribution on any given set

of species that maximizes diversity from an infinite number of viewpoints

simultaneously (Chapter 6);

• an extension of Shannon entropy from its classical context of finite sets to

distributions on a metric space or a graph (Chapter 6), obtained by translat-

ing the similarity-sensitive diversity measures into the language of entropy.

Shannon entropy is a fundamental concept of information theory, but informa-

tion theory contains many riches besides. We will mine them, discovering:

• how the concept of relative entropy not only touches subjects from Bayesian

inference to coding theory to Riemannian geometry, but also provides a way

of quantifying local diversity within a larger context (Chapter 3);

• quantitative methods for identifying particularly unusual or atypical parts of

an ecological community (Chapter 8, drawing on work of Reeve et al. [293]).

The main narrative thread is modest in its mathematical prerequisites. But we

also take advantage of some more specialized bodies of knowledge (large devi-

ation theory, the theory of operads, and the theory of finite fields), establishing:

• how probability theory can be used to solve functional equations (Chapter 9,

following work of Aubrun and Nechita [20]);

• a streamlined characterization of information loss, as a natural consequence

of categorical and operadic thinking (Chapters 10 and 12);

• that the concept of entropy is (provably) inescapable even in the pure-

mathematical heartlands of category theory, algebra and topology, quite sep-

arately from its importance in scientific applications (Chapter 12);

• the right definition of entropy for probability distributions whose ‘probabil-

ities’ are elements of the ring Z/pZ of integers modulo a prime p (Chap-

ter 11, drawing on work of Kontsevich [195]).

The question of how to quantify diversity is far more mathematically profound

than is generally appreciated. This book makes the case that the theory of di-

versity measurement is fertile soil for new mathematics, just as much as the

neighbouring but far more thoroughly worked field of information theory.

∗ ∗ ∗
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Introduction 3

What is the problem of quantifying diversity? Briefly, it is to take a bio-

logical community and extract from it a numerical measure of its ‘diversity’

(whatever that should mean). This task is certainly beset with practical prob-

lems: for instance, field ecologists recording woodland animals will probably

observe the noisy, the brightly coloured and the gregarious more frequently

than the quiet, the camouflaged and the shy. There are also statistical difficul-

ties: if a survey of one community finds 10 different species in a sample of 50

individuals, and a survey of another finds 18 different species in a sample of

100, which is more diverse?

However, we will not be concerned with either the practical or the statistical

difficulties. Instead, we will focus on a fundamental conceptual problem: in

an ideal world where we have complete, perfect data, how can we quantify

diversity in a meaningful and logical way?

In both the news media and the scientific literature, the most common mean-

ing given to the word ‘diversity’ (or ‘biodiversity’) is simply the number of

species present. Certainly this is an important quantity. However, it is not al-

ways very informative. For instance, the number of species of great ape on the

planet is 8 (Example 4.3.8), but 99.99% of all great apes belong to just one

species: us. In terms of global ecology, it is arguably more accurate to say that

there is effectively only one species of great ape.

An example illustrates the spectrum of possible interpretations of the con-

cept of diversity. Consider two bird communities:

A B

In community A, there are four species, but the majority of individuals belong

to a single dominant species. Community B contains the first three species in

equal abundance, but the fourth is absent. Which community, A or B, is more

diverse?

One viewpoint is that the presence of species is what matters. Rare species

count for as much as common ones: every species is precious. From this view-
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4 Introduction

point, community A is more diverse, simply because more species are present.

The abundances of species are irrelevant; presence or absence is all that mat-

ters.

But there is an opposing viewpoint that prioritizes the balance of commu-

nities. Common species are important; they are the ones that exert the most

influence on the community. Community A has a single very common species,

which has largely outcompeted the others, whereas community B has three

common species, evenly balanced. From this viewpoint, community B is more

diverse.

These two viewpoints are the two ends of a continuum. More precisely, there

is a continuous one-parameter family (Dq)q∈[0,∞] of diversity measures encod-

ing this spectrum of viewpoints. Low values of q attach high importance to

rare species; for example, D0 measures community A as more diverse than

community B. When q is high, Dq is most strongly influenced by the balance

of more common species; thus, D∞ judges B to be more diverse. No single

viewpoint is right or wrong. Different scientists adopt different viewpoints (that

is, different values of q) for different purposes, as the literature amply attests

(Examples 4.3.5).

Long ago, it was realized that the concept of diversity is closely related to

the concept of entropy. Entropy appears in dozens of guises across dozens of

branches of science, of which thermodynamics is probably the most famous.

(The introduction to Chapter 2 gives a long but highly incomplete list.) The

most simple incarnation is Shannon entropy, which is a real number associated

with any probability distribution on a finite set. It is, in fact, the logarithm of

the diversity measure D1. Most often, Shannon entropy is explained and un-

derstood through the theory of coding; indeed, we provide such an explanation

here. But the diversity interpretation provides a new perspective.

For example, the diversity measures Dq, known in ecology as the Hill num-

bers, are the exponentials of what information theorists know as the Rényi

entropies. From the very beginning of information theory, an important role

has been played by characterization theorems: results stating that any measure

(of information, say) satisfying a list of desirable properties must be of a par-

ticular form (a scalar multiple of Shannon entropy, say). But what counts as

a desirable property depends on one’s perspective. We will prove that the Hill

numbers Dq are, in a precise sense, the only measures of diversity with certain

natural properties (Theorem 7.4.3). This theorem translates into a new charac-

terization of the Rényi entropies, but it is not one that necessarily would have

been thought of from a purely information-theoretic perspective.

However, something is missing. In the real world, diversity is understood as

involving not only the number and abundances of the species, but also how dif-
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ferent they are. (For example, this affects conservation policy; see the OECD

quotation on p. 169.) We describe the remedy in Chapter 6, defining a fam-

ily of diversity measures that take account of the varying similarity between

species, while still incorporating the spectrum of viewpoints discussed above.

This definition unifies into one family a large number of the diversity measures

proposed and used in the ecological and genetics literature.

This family of diversity measures first appeared in a paper in Ecology [220],

but it can also be understood and motivated from a purely mathematical per-

spective. The classical Rényi entropies are a family of real numbers assigned

to any probability distribution on a finite set. By factoring in the differences or

distances between points (species), we extend this to a family of real numbers

assigned to any probability distribution on a finite metric space. In the extreme

case where d(x, y) = ∞ for all distinct points x and y, we recover the Rényi

entropies. In this way, the similarity-sensitive diversity measures extend the

definition of Rényi entropy from sets to metric spaces.

Different values of the viewpoint parameter q ∈ [0,∞] produce different

judgements on which of two distributions is the more diverse. But it turns out

that for any metric space (or in biological terms, any set of species), there is

a single distribution that maximizes diversity from all viewpoints simultane-

ously. For a generic finite metric space, this maximizing distribution is unique.

Thus, almost every finite metric space carries a canonical probability distribu-

tion (not usually uniform). The maximum diversity itself is also independent

of q, and is therefore a numerical invariant of metric spaces. This invariant has

geometric significance in its own right (Section 6.5).

We go further. One might wish to evaluate an ecological community in a way

that takes into account some notion of the values of the species (such as phylo-

genetic distinctiveness). Again, there is a sensible family of measures that does

this job, extending not only the similarity-sensitive diversity measures just de-

scribed, but also further measures already existing in the ecological literature.

The word ‘sensible’ can be made precise: as soon as we subject an abstract

measure of the value of a community to some basic logical requirements, it

is forced to belong to a certain one-parameter family (σq) (Theorem 7.3.4),

which are essentially the Rényi relative entropies.

Information theory also helps us to analyse the diversity of metacommuni-

ties, that is, ecological communities made up of a number of smaller communi-

ties such as geographical regions. The established notions of relative entropy,

conditional entropy and mutual information provide meaningful measures of

the structure of a metacommunity (Chapter 8). But we will do more than sim-

ply translate information theory into ecological language. For example, the

new characterization of the Rényi entropies mentioned above is a byproduct of
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6 Introduction

the characterization theorem for measures of ecological value. In this way, the

theory of diversity gives back to information theory.

∗ ∗ ∗

The scientific importance of biological diversity goes far beyond the obvi-

ous setting of conservation of animals and plants. Certainly such conservation

efforts are important, and the need for meaningful measures of diversity is well

appreciated in that context. For example, Vane-Wright et al. [342] wrote thirty

years ago of the ‘agony of choice’ in conservation of flora and fauna, and em-

phasized how crucial it is to use the right diversity measures.

But most life is microscopic. Nee [262] argued in 2004 that

[w]e are still at the very beginning of a golden age of biodiversity dis-

covery, driven largely by the advances in molecular biology and a new

open-mindedness about where life might be found,

and that

all of the marvels in biodiversity’s new bestiary are invisible.

Even excluding exotic new discoveries of microscopic life, two recent lines of

research illustrate important uses of diversity measures at the microbial level.

First, the extensive use of antimicrobial drugs on animals unfortunate

enough to be born into the modern meat industry is commonly held to be a

cause of antimicrobial resistance in pathogens affecting humans. However, a

2012 study of Mather et al. [246] suggests that the causality may be more

complex. By analysing the diversity of antimicrobial resistance in Salmonella

taken from animal populations on the one hand, and from human populations

on the other, the authors concluded that the animal population is ‘unlikely to be

the major source of resistance’ for humans, and that ‘current policy emphasis

on restricting antimicrobial use in domestic animals may be overly simplis-

tic’. The diversity measures used in this analysis were the Hill numbers Dq

mentioned above and central to this book.

Second, the increasing problem of obesity in humans has prompted re-

search into causes and treatments, and there is evidence of a negative cor-

relation between obesity and diversity of the gut microbiome (Turnbaugh et

al. [335, 336]). Almost all traditional measures of diversity rely on a division

of organisms into species or other taxonomic groups, but in this case, only a

fraction of the microbial species concerned have been isolated and classified

taxonomically. Researchers in this field therefore use DNA sequence data, ap-

plying sophisticated but somewhat arbitrary clustering algorithms to create ar-

tificial species-like groups (‘operational taxonomic units’). On the other hand,
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the similarity-sensitive diversity measures mentioned above and introduced in

Chapter 6 can be applied directly to the sequence data, bypassing the cluster-

ing step and producing a measure of genetic diversity. A test case was carried

out in Leinster and Cobbold [220] (Example 4), with results that supported the

conclusions of Turnbaugh et al.

Despite the wide variety of uses of diversity measures in biology, none of the

mathematics presented in this text is intrinsically biological. Indeed, the math-

ematics of diversity was being developed as early as 1912 by the economist

Corrado Gini [118] (best known for the Gini coefficient of disparity of wealth),

and by the statistician Udny Yule in the 1940s for the analysis of lexical di-

versity in literature [361]. Some of the diversity measures most common in

ecology have recently been used to analyse the ethnic and sociological diver-

sity of judges (Barton and Moran [30]), and the similarity-sensitive diversity

measures that are the subject of Chapter 6 have been used not only in multiple

ecological contexts (as listed after Example 6.1.8), but also in non-biological

applications such as computer network security (Wang et al. [347]).

In mathematical terms, simple diversity measures such as the Hill num-

bers are invariants of a probability distribution on a finite set. The similarity-

sensitive diversity measures are defined for any probability distribution on a fi-

nite set with an assigned degree of similarity between each pair of points. (This

includes any finite metric space or graph.) The value measures are defined for

any finite set equipped with a probability distribution and an assignment of a

nonnegative value to each element. The metacommunity measures are defined

for any probability distribution on the cartesian product of a pair of finite sets.

Much of this text is written using ecological terminology, but the mathematics

is entirely general.

∗ ∗ ∗

This work grew out of a general category-theoretic study of size. In many

parts of mathematics, there is a canonical notion of the size of the objects

of study: sets have cardinality, vector spaces have dimension, subsets of Eu-

clidean space have volume, topological spaces have Euler characteristic, and

so on. Typically, such measures of size satisfy analogues of the elementary

inclusion-exclusion and multiplicativity formulas for counting finite sets:

|X ∪ Y | = |X| + |Y | − |X ∩ Y |,

|X × Y | = |X| · |Y |.

(The interpretation of Euler characteristic as the topological analogue of car-

dinality is not as well known as it should be; this is an insight of Schanuel on

www.cambridge.org/9781108832700
www.cambridge.org


Cambridge University Press
978-1-108-83270-0 — Entropy and Diversity
Tom Leinster 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Introduction

which we elaborate in Section 6.4.) From a categorical perspective, it is natural

to seek a single invariant unifying all of these measures of size.

Some unification is achieved by defining a notion of size for categories

themselves, called magnitude or Euler characteristic. (Finiteness hypotheses

are required, but will not be mentioned in this overview.) This definition al-

ready brings together several established invariants of size [210]: cardinality

of sets, and the various notions of Euler characteristic for partially ordered

sets, topological spaces, and even orbifolds (whose Euler characteristics are in

general not integers). The theory of magnitude of categories is closely related

to the theory of Möbius–Rota inversion for partially ordered sets [301, 215].

But the decisive, unifying step is the generalization of the definition of mag-

nitude from categories to the wider class of enriched categories [216], which

includes not only categories themselves, but also metric spaces, graphs, and

the additive categories that are a staple of homological algebra.

The definition of the magnitude of an enriched category unifies still more es-

tablished invariants of size. For example, in the representation theory of asso-

ciative algebras, one frequently considers the indecomposable projective mod-

ules, which form an additive category. The magnitude of that additive category

turns out to be the Euler form of a certain canonical module, defined as an

alternating sum of dimensions of Ext groups (equation (6.20)). Magnitude for

enriched categories can also be realized as the Euler characteristic of a certain

Hochschild-like homology theory of enriched categories, in the same sense

that the Jones polynomial for knots is the Euler characteristic of Khovanov

homology [189]. This was established in recent work led by Shulman [224],

building on the case of magnitude homology for graphs previously developed

by Hepworth and Willerton [144].

Since any metric space can be regarded as an enriched category, the general

definition of the magnitude of an enriched category gives, in particular, a def-

inition of the magnitude |X| ∈ R of a metric space X. Unlike the other special

cases just mentioned, this invariant is essentially new.

Recent, increasingly sophisticated, work in analysis has connected magni-

tude with classical invariants of geometric measure. For example, for a com-

pact subset X ⊆ Rn satisfying certain regularity conditions, if one is given the

magnitude of all of the rescalings tX of X (for t > 0), then one can recover:

• the Minkowski dimension of X (one of the principal notions of fractional di-

mension), a result proved by Meckes using results in potential theory (The-

orem 6.5.9);

• the volume of X, a result proved by Barceló and Carbery using PDE methods

(Theorem 6.5.6);
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• the surface area of X, a result proved by Gimperlein and Goffeng using

global analysis (or more specifically, tools for computing heat trace asymp-

totics; see Theorem 6.5.8).

Gimperlein and Goffeng also proved an asymptotic inclusion-exclusion prin-

ciple:

|t(X ∪ Y)| + |t(X ∩ Y)| − |tX| − |tY | → 0

as t → ∞, for sufficiently regular X,Y ⊆ Rn (Section 6.5). This is another

manifestation of the cardinality-like nature of magnitude.

We have seen that every finite metric space X has an unambiguous maximum

diversity Dmax(X) ∈ R, defined in terms of the similarity-sensitive diversity

measures (p. 5). We have also seen that X has a magnitude |X| ∈ R. These

two real numbers are not in general equal (ultimately because probabilities or

species abundances are forbidden to be negative), but they are closely related.

Indeed, Dmax(X) is always equal to the magnitude of some subspace of X,

and in important families of cases is equal to the magnitude of X itself. So,

magnitude is closely related to maximum diversity. Indeed, this relationship

was exploited by Meckes to prove the result on Minkowski dimension.

There is a historical surprise. Although this author arrived at the definition

of the magnitude of a metric space by the route of enriched category theory, it

had already arisen in earlier work on the quantification of biodiversity. In 1994,

the environmental scientists Andrew Solow and Stephen Polasky carried out a

probabilistic analysis of the benefits of high biodiversity ([319], Section 4), and

isolated a particular quantity that they called the ‘effective number of species’.

They did not investigate it mathematically, merely remarking mildly that it ‘has

some appealing properties’. It is exactly our magnitude.

∗ ∗ ∗

Ecologists began to propose quantitative definitions of biological diversity in

the mid-twentieth century [314, 351], setting in motion more than sixty years

of heated debate, with dozens of further proposed diversity measures, hun-

dreds of scholarly papers, at least one book devoted to the subject [240], and

consequently, for some, despair (expressed as early as 1971 in a famously ti-

tled paper of Hurlbert [150]). Meanwhile, parallel debates were taking place

in genetics and other disciplines.

The connections between diversity measurement on the one hand, and infor-

mation theory and category theory on the other, are fruitful for both mathemat-

ics and biology. But any measure of biological diversity must be justifiable in

purely biological terms, rather than by borrowing authority from information
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theory, category theory, or any other field. The ecologist E. C. Pielou warned

against attaching ecological significance to diversity measures for anything

other than ecological reasons:

It should not be (but it is) necessary to emphasize that the object of calcu-

lating indices of diversity is to solve, not to create, problems. The indices

are merely numbers, useful in some circumstances but not in all. [. . . ]

Indices should be calculated for the light (not the shadow) they cast on

genuine ecological problems.

(Pielou [283], p. 293).

In a series of incisive papers beginning in 2006, the conservationist and

botanist Lou Jost insisted that whatever diversity measures one uses, they must

exhibit logical behaviour [166, 167, 168, 169]. For example, Shannon entropy

is commonly used as a diversity measure by practising ecologists, and it does

behave logically if one is only using it to ask whether one community is more

or less diverse than another. But as Jost observed, any attempt to reason about

percentage changes in diversity using Shannon entropy runs into logical absur-

dities: Examples 2.4.7 and 2.4.11 describe the plague that exterminates 90%

of species but only causes a 17% drop in ‘diversity’, and the oil drilling that

simultaneously destroys and preserves 83% of the ‘diversity’ of an ecosystem.

It is, in fact, the exponential of Shannon entropy that should be used for this

purpose.

In this sense, origin stories are irrelevant. Inventing new diversity measures

is easy, and it is nearly as easy to tell a story of how a new measure fits with

some intuitive idea of diversity, or to justify it in terms of its importance in

some related discipline. But if a measure does not pass basic logical tests (as

in Section 4.4), it is useless or worse.

Jost noted that all of the Hill numbers Dq do behave logically. Again, we go

further: Theorem 7.4.3 states that the Hill numbers are in fact the only measures

of diversity satisfying certain logically fundamental properties. (At least, this is

so for the simple model of a community in terms of species abundances only.)

This is the ideal of the axiomatic approach: to prove results stating that if one

wishes to have a measure with such-and-such properties, then it can only be

one of these measures.

Mathematically, such results belong to the field of functional equations. We

review a small corner of this vast and classical theory, beginning with the fact

that the only measurable functions f : R→ R satisfying the Cauchy functional

equation f (x + y) = f (x) + f (y) are the linear mappings x 	→ cx. Building

on classical results, we obtain new axiomatic characterizations of a variety of

measures of diversity, entropy and value. We also explain a new method, pio-
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