Introduction to Complex Variables and Applications

The study of complex variables is both beautiful from a purely mathematical point of view, and very useful for solving a wide array of problems arising in applications. This introduction to complex variables, suitable as a text for a one-semester course, has been written for undergraduate students in applied mathematics, science, and engineering. Based on the authors’ extensive teaching experience, it covers topics of keen interest to these students, including ordinary differential equations, as well as Fourier and Laplace transform methods for solving partial differential equations arising in physical applications. Many worked examples, applications, and exercises are included. With this foundation, students can progress beyond the standard course and explore a range of additional topics, including the generalized Cauchy theorem, Painlevé equations, computational methods, and conformal mapping with circular arcs. Advanced topics are labeled with an asterisk and can either be included in the syllabus or form the basis for challenging student projects.

MARK J. ALOWITZ is Professor of Applied Mathematics at the University of Colorado, Boulder. He is the author of five books, including Nonlinear Dispersive Waves (Cambridge, 2011) and Complex Variables: Introduction and Applications (Cambridge, 2003), now in its second edition.

ATHANASSIOS S. FOKAS is Professor of Nonlinear Mathematical Science in the Department of Applied Mathematics and Theoretical Physics at the University of Cambridge. He is also Adjunct Professor in the Viterby School of Engineering at the University of Southern California. He is the author of four books, including Complex Variables: Introduction and Applications (Cambridge, 2003) and A Unified Approach to Boundary Value Problems (2008).
Cambridge Texts in Applied Mathematics

All titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing, visit www.cambridge.org/mathematics.

Geometric and Topological Inference
JEAN-DANIEL BOISSONNAT, FRÉDÉRIC CHAZAL & MARIETTE YVINEC

Introduction to Magnetohydrodynamics (2nd Edition)
P. A. DAVIDSON

An Introduction to Stochastic Dynamics
JINQIAO DUAN

Singularities: Formation, Structure and Propagation
J. EGGERS & M. A. FONTELOS

Stochastic Modelling of Reaction-Diffusion Processes
RADEK ERBAN & S. JONATHAN CHAPMAN

Microhydrodynamics, Brownian Motion and Complex Fluids
MICHAEL D. GRAHAM

Discrete Systems and Integrability
J. HIETARINTA, N. JOSHI & F. W. NIJHOFF

Think Before You Compute: A Prelude to Computational Fluid Dynamics
E. J. HINCH

An Introduction to Polynomial and Semi-Algebraic Optimization
JEAN BERNARD LASSERRE

The Fluid Dynamics of Cell Motility
ERIC LAUGA

Self-Exciting Fluid Dynamos
KEITH MOFFATT & EMMANUEL DORMY

Numerical Linear Algebra
HOLGER WENDLAND
Introduction to Complex Variables
and Applications

MARK J. ABLowitz
University of Colorado Boulder

ATHANASSIOS S. FOKAS
University of Cambridge and University of Southern California
Contents

Preface

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii</td>
</tr>
</tbody>
</table>

1 Complex Numbers and Elementary Functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Complex Numbers and Their Properties</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Elementary Functions, Stereographic Projections</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Limits, Continuity, and Complex Differentiation</td>
<td>19</td>
</tr>
<tr>
<td>1.4 Elementary Applications to Ordinary Differential Equations</td>
<td>27</td>
</tr>
</tbody>
</table>

2 Analytic Functions and Integration

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Analytic Functions</td>
<td>31</td>
</tr>
<tr>
<td>2.2 Multivalued Functions</td>
<td>46</td>
</tr>
<tr>
<td>*2.3 More Complicated Multivalued Functions and Riemann Surfaces</td>
<td>61</td>
</tr>
<tr>
<td>2.4 Complex Integration</td>
<td>70</td>
</tr>
<tr>
<td>2.5 Cauchy’s Theorem</td>
<td>82</td>
</tr>
<tr>
<td>2.6 Cauchy’s Integral Formula, its $\bar{\partial}$ Generalization, and Consequences</td>
<td>93</td>
</tr>
</tbody>
</table>

3 Sequences, Series and Singularities of Complex Functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Definitions of Complex Sequences, Series and their Basic Properties</td>
<td>106</td>
</tr>
<tr>
<td>3.2 Taylor Series</td>
<td>113</td>
</tr>
<tr>
<td>3.3 Laurent Series</td>
<td>126</td>
</tr>
<tr>
<td>*3.4 Theoretical Results for Sequences and Series</td>
<td>135</td>
</tr>
<tr>
<td>3.5 Singularities of Complex Functions</td>
<td>141</td>
</tr>
<tr>
<td>*3.6 Infinite products and Mittag-Leffler expansions</td>
<td>157</td>
</tr>
<tr>
<td>*3.7 Differential Equations in the Complex Plane; Painlevé Equations</td>
<td>172</td>
</tr>
<tr>
<td>*3.8 Computational Methods</td>
<td>192</td>
</tr>
</tbody>
</table>
Contents

4 **Residue Calculus and Applications of Contour Integration** 203
 4.1 Cauchy Residue Theorem 203
 4.2 Evaluation of Certain Definite Integrals 214
 4.3 Indented Contours, Principal Value Integrals, and Integrals with Branch Points 232
 4.4 The Argument Principle, Rouché’s Theorem 252
 4.5 Fourier and Laplace Transforms 259
 4.6 Applications of Transforms to Differential Equations 276

5 **Conformal Mappings and Applications** 297
 5.1 Introduction 297
 5.2 Conformal Transformations 298
 5.3 Critical Points and Inverse Mappings 304
 5.4 Physical Applications 309
 5.5 Theoretical Considerations – Mapping Theorems 328
 5.6 The Schwarz–Christoffel Transformation 331
 5.7 Bilinear Transformations 350
 5.8 Mappings Involving Circular Arcs 366
 5.9 Other Considerations 384

Appendix
 Answers to Selected Odd-numbered Exercises 395

Bibliography

Index

403

406
Preface

The study of complex variables is both beautiful from a purely mathematical point of view, and provides a powerful tool for solving a wide array of problems arising in applications. It is perhaps surprising that to explain real phenomena, mathematicians, scientists, and engineers often resort to the “complex plane.” In fact using complex variables one can solve many problems that are either very difficult or virtually impossible to solve by other means. The text provides a broad treatment of both the fundamentals and the applications of this subject.

This text can be used in an introductory undergraduate course. Alternatively, it can be used in a beginning graduate-level course and as a reference. Indeed, this book provides an introduction to the study of complex variables. It also contains a number of applications which include evaluation of integrals, methods of solution to certain ordinary and partial differential equations, and ideal fluid flow. It also provides a broad discussion of conformal mappings and many of their applications. In fact, applications are discussed throughout the book. Our point of view is that students are motivated and enjoy learning the material when they can relate it to applications.

To aid the instructor we have denoted with an asterisk certain sections which are more advanced. These sections can be read independently or can be skipped. However, in teaching the course we have found that the more advanced sections can be effectively used as a source of valuable material for student projects. Every effort has been made to make this book self-contained. Thus, advanced students using this text will have the basic material at their disposal without dependence on other references.

We realize that many of the topics presented in this book are not usually covered in complex variables texts. This includes the generalized Cauchy integral formula, ODEs in the complex plane, the solution of linear PDEs by integral transforms, conformal mappings of polygons with circular sides, etc. Actually some of these topics, when studied at all, are only included in advanced graduate-level courses.
viii

Preface

However, we believe that these topics arise so frequently in applications that early exposure is useful. It is fortunate that it is indeed possible to present this material in such a way that it can be understood with only the foundation presented in the introductory chapters of this book.

We are indebted to our families who have endured all too many hours of our absence. We are thankful to B. Fast and C. Smith for an outstanding job of word processing the manuscript and to B. Fast who has so capably used mathematical software to verify many formulae and produce figures.

Several colleagues helped us with the preparation of this book. B. Herbst made many suggestions and was instrumental in the development of the computational section. C. Schober, L. Luo, and L. Glasser worked with us on many of the exercises.

We are deeply appreciative that (the late) David Benney encouraged us to write this book. We would like to take this opportunity to thank those agencies who have over the years consistently supported our research efforts. Actually this research led us to several of the applications presented in this book. We thank the Air Force Office of Scientific Research, the National Science Foundation, the Engineering and Physical Research Council of the UK, and in particular Arje Nachman, Program Director (Air Force Office of Scientific Research), for his continual support.