Cambridge University Press 978-1-108-83249-6 — Polynomial Methods and Incidence Theory Adam Sheffer Table of Contents <u>More Information</u>

Contents

	Introd	duction	<i>page</i> xi
1	Incid	Incidences and Classical Discrete Geometry	
	1.1	Introduction to Incidences	1
	1.2	First Proofs	2
	1.3	The Crossing Lemma	5
	1.4	Szemerédi-Trotter via the Crossing Lemma	7
	1.5	The Unit Distances Problem	8
	1.6	The Distinct Distances Problem	10
	1.7	A Problem about Unit Area Triangles	13
	1.8	The Sum-Product Problem	14
	1.9	Rich Points	16
	1.10	Point-Line Duality	18
	1.11	Exercises	19
	1.12	Open Problems	22
2	Basic	e Real Algebraic Geometry in \mathbb{R}^2	25
	2.1	Varieties	25
	2.2	Curves in \mathbb{R}^2	27
	2.3	An Application: Pascal's Theorem	32
	2.4	Exercises	33
3	Polyr	nomial Partitioning	35
	3.1	The Polynomial Partitioning Theorem	35
	3.2	Incidences with Curves in \mathbb{R}^2	36
	3.3	Proving the Polynomial Partitioning Theorem	42
	3.4	Curves Containing Lattice Points	45
	3.5	Exercises	47
	3.6	Open Problems	49

Cambridge University Press	
978-1-108-83249-6 – Polynomial Methods and Incidence Theor	y
Adam Sheffer	
Table of Contents	
More Information	

viii		Contents	
4	Basic I	Real Algebraic Geometry in \mathbb{R}^d	51
	4.1	Ideals	51
	4.2	Dimension	52
	4.3	Tangent Spaces and Singular Points	55
	4.4	Generic Objects	58
	4.5	Degree and Complexity	59
	4.6	Polynomial Partitioning in \mathbb{R}^d	63
	4.7	Exercises	64
5	The Jo	ints Problem and Degree Reduction	66
	5.1	The Joints Problem	66
	5.2	Additional Applications of the Polynomial Argument	70
	5.3	(Optional) The Probabilistic Argument	72
	5.4	Exercises	74
	5.5	Open Problems	75
6	Polyno	mial Methods in Finite Fields	76
	6.1	Finite Fields Preliminaries	76
	6.2	The Finite Field Kakeya Problem	77
	6.3	(Optional) The Method of Multiplicities	80
	6.4	The Cap Set Problem	83
	6.5	Warmups: Two Distances and Odd Towns	85
	6.6	Tensors and Slice Rank	87
	6.7	A Polynomial Method with Slice Rank	91
	6.8	Exercises	92
	6.9	Open Problems	94
7	The El	ekes–Sharir–Guth–Katz Framework	95
	7.1	Warmup: Distances between Points on Two Lines	96
	7.2	The ESGK Framework	99
	7.3	(Optional) Lines in the Parametric Space \mathbb{R}^3	103
	7.4	Exercises	105
	7.5	Open Problems	106
8	Consta	nt-Degree Polynomial Partitioning and	
	Incide	nces in \mathbb{C}^2	108
	8.1	Introduction: Incidence Issues in \mathbb{C}^2 and \mathbb{R}^d	108
	8.2	Constant-Degree Polynomial Partitioning	112
	8.3	The Szemerédi–Trotter Theorem in \mathbb{C}^2	116
	8.4	Exercises	121
	8.5	Open Problems	122

Cambridge University Press	
978-1-108-83249-6 – Polynomial Methods and Incidence Theo	ory
Adam Sheffer	
Table of Contents	
More Information	

		Contents	ix
9	Lines in \mathbb{R}^3		125
	9.1	From Intersecting Lines to Incidences	125
	9.2	Rich Points in \mathbb{R}^3	128
	9.3	(Optional) Lines in a Two-Dimensional Surface	135
	9.4	Exercises	139
	9.5	Open Problems	140
10	Disti	nct Distances Variants	142
	10.1	Subsets with No Repeated Distances	142
	10.2	Point Sets with Few Distinct Distances	145
	10.3	Trapezoids Formed by Pairs of Intervals	146
	10.4	Exercises	152
	10.5	Open Problems	153
11	Incid	ences in \mathbb{R}^d	155
	11.1	Warmup: Incidences with Curves in \mathbb{R}^3	155
	11.2	Hilbert Polynomials	158
	11.3	A General Point-Variety Incidence Bound	161
	11.4	Exercises	168
	11.5	Open Problems	170
12	Incid	ence Applications in \mathbb{R}^d	172
	12.1	Distinct Distances with Local Properties	172
	12.2	Additive Energy on a Hypersphere	175
	12.3	Exercises	179
	12.4	Open Problems	180
13	Incid	ences in Spaces Over Finite Fields	182
	13.1	First Incidence Bounds in \mathbb{F}_q^2	182
	13.2	A Brief Introduction to the Projective Plane	184
	13.3	Incidences between Large Sets of Points and Lines	187
	13.4	Planes in \mathbb{F}_q^3 and the Sum-Product Problem	190
	13.5	Incidences between Medium Sets of Points and Lines	194
	13.6	Exercises	202
	13.7	Open Problems	203
14	Algel	oraic Families, Dimension Counting, and Ruled Surfaces	204
	14.1	Families of Varieties	204
	14.2	An Incidence Bound for Large Parameters	206
	14.3	Complexification and Constructible Sets	209
	14.4	Families with Sets of Parameters	211
	14.5	Properties of Ruled Surfaces	215

CAMBRIDGE

Cambridge University Press	
978-1-108-83249-6 – Polynomial Methods and Incidence Theo	ory
Adam Sheffer	
Table of Contents	
More Information	

Х	Contents	
14	.6 Exercises	222
14	.7 Open Problems	223
Appendix	Preliminaries	225
А.	1 Asymptotic Notation	225
Α.	2 Graph Theory	228
Α.	3 Inequalities	229
Α.	4 Exercises	231
Re	ferences	232
Inc	Index	