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Introduction

Algebra is the offer made by the devil to the mathematician. The devil says: I will give

you this powerful machine, it will answer any question you like. All you need to do is

give me your soul: give up geometry and you will have this marvellous machine.

Michael Atiyah (2005).

In his famous essay on how to write mathematics, Paul Halmos (1970) states,

“Just as there are two ways for a sequence not to have a limit (no cluster points

or too many), there are two ways for a piece of writing not to have a subject (no

ideas or too many).” The book that you are now starting has two main subjects,

which is hopefully a reasonable amount. These two subjects, the polynomial

method and incidence theory, are tied together and difficult to separate.

Geometric incidences are a family of problems that have existed in discrete

geometry for many decades. Starting around 2009, these problems have

been experiencing a renaissance. New and interesting connections between

incidences and other parts of mathematics are constantly being exposed.

Incidences already have a variety of applications in harmonic analysis,

theoretical computer science, model theory, number theory, and more. At the

same time, significant progress is being made on long-standing open incidence

problems. The study of geometric incidences is currently an active and exciting

research field. One purpose of this book is to survey this field, the recent

developments in it, and its connections to other fields.

What are incidences? Consider a set of points P and a set of lines L in the

plane R2. An incidence is a pair (p, ℓ) ∈ P × L such that the point p is on the

line ℓ. For example, see Figure 1. One fundamental incidence result states that

n points and n lines in R2 form at most 2.5n4/3 incidences. While the exponent

4/3 cannot be improved, it is possible that the coefficient 2.5 could be replaced

with a slightly smaller one.

xi
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xii Introduction

Figure 1 A configuration of four points, four lines, and nine incidences. For

example, the point a forms an incidence with each of the lines A, B, and C.

In other incidence problems, we replace the lines with circles, parabolas,

or other types of curves. Additional variants include incidences with higher-

dimensional objects in Rd , incidences with semi-algebraic sets, incidences

with complex objects in Cd , in spaces over finite fields, o-minimal structures,

and more. In most of these cases, finding the maximum possible number of

incidences remains an open problem.

An incidence result of a different flavor states that there exists a positive

constant c ∈ R that satisfies the following. For every sufficiently large n, every

set of n points in R2 satisfies at least one of the following statements:

• There exists a line that is incident to at least cn of the points.

• There exist at least cn2 lines that are incident to at least two of the points.

Sylvester (1868) studied incidence problems back in the 1860s. The earliest

incidence problem that we are aware of appears in a book of riddles (Jackson,

1821). This book contains 10 problems of the form that is presented in Figure 2.

In modern English, the problem in Figure 2 asks for the following: Place points

in the plane, such that the number of lines that contain exactly three points is

at least the number of points.

Figure 2 A riddle from the 1821 book Rational Amusement for Winter Evenings,

Or, A Collection of Above 200 Curious and Interesting Puzzles and Paradoxes

Relating to Arithmetic, Geometry, Geography.

Most of the recent progress in incidence theory is due to new algebraic

techniques. One may describe the philosophy behind these techniques as
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Introduction xiii

Collections of objects that exhibit extremal behavior often have hidden

algebraic structure. This algebraic structure can be exploited to gain a better

understanding of the original problem.

For example, in a point-line configuration with many incidences, we might

expect the points to form a lattice structure. Intuitively, we expose the algebraic

structure by defining polynomials according to the problem, and then studying

properties of these polynomials. In an incidence problem, we might study

a polynomial that vanishes on all the points. This approach is called the

polynomial method. In this book, we explore a wide variety of such polynomial

proofs. We use these techniques to study incidence bounds, the finite field

Kakeya problem, the cap set problem, distinct distances problems, the joints

problem, and more.

Polynomial methods have existed for several decades. One well-known

polynomial method is Alon’s Combinatorial Nullstellensatz, as described in

Alon (1999). As long ago as 1970, Rédei introduced an elegant polynomial

proof. This book is focused on the new wave of polynomial methods that

started to appear around 2009. These methods are quite different from the

preceding ones.

This book aims to be an accessible introduction to the new polynomial

methods and to incidence theory. For that reason, the book includes many

examples, warm-up proofs, figures, and intuitive ways of thinking about tricky

ideas. Many techniques are presented gradually and in detail. Readers who wish

to dig deeper into a particular topic can find references in the relevant chapter.

Incidence theory and the polynomial methods are still developing. There are

many interesting open problems, and, in some sense, the foundations are not

completely established yet. For that reason, most of the chapters of this book end

with an open problems section. These sections focus mostly on long-standing

difficult problems. Their goal is to illustrate the current research fronts and the

main difficulties that researchers are currently facing.

Several sections are defined as optional. Some sections, such as Section

7.3, are optional because they consist of standard technical proofs that may

not provide any new insights. Other sections require familiarity with a topic

that is orthogonal to the topics of this book. For example, the optional Section

9.3 requires basic familiarity with differential topology, which does not appear

anywhere else in the book.

Two other good sources for polynomial methods in discrete geometry are

the book Polynomial Methods in Combinatorics (Guth, 2016) and the survey
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xiv Introduction

“Incidence theorems and their applications” (Dvir, 2012). While these sources

and the current book study similar topics, the overlap between them is smaller

than one might expect.

Figure 3 Chapter dependencies. The dashed edge marks a dependency that is

recommended but not necessary.

How to Read This Book

Throughout this book, we rely heavily on asymptotic notation such as x = O(y).

The appendix contains an introduction to asymptotic notation, together with

exercises. This appendix also briefly surveys basic graph theory notation and

the Cauchy–Schwarz inequality.

There are many ways to read this book, depending on the goal of the reader.

One way is to start from the beginning and read the chapters consecutively.

The beginning of the book contains more introductory material. The end of the

book contains mostly optional advanced topics. Figure 3 illustrates the chapter

dependencies. Some reading options are:

• A brief introduction to discrete geometry. For an introduction to problems

and techniques from classical discrete geometry, read Chapter 1. This chapter

does not involve polynomial methods.

• An introduction to polynomial partitioning. To learn how to prove

incidence results by using polynomial methods, read Chapters 1–3. Chapter 2

is a minimal introduction to algebraic curves in the real plane. Chapter 3

consists of the basics of the polynomial partitioning technique, and how to

use this technique to prove incidence bounds.

• A variety of polynomial methods in combinatorics. To see a variety of

polynomial methods in combinatorics, read Chapters 1–6. In addition to

the polynomial partitioning technique, Chapters 5 and 6 contain several

other polynomial breakthroughs. Chapter 4 introduces basic concepts from
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Introduction xv

real algebraic geometry, and can be quickly skimmed by a reader who does

not intend to read beyond Chapter 6. Chapter 5 contains the polynomial proof

of the joints theorem. Chapter 6 contains polynomial proofs for problems in

finite fields, such as the finite field Kakeya problem and the cap set problem.

• The distinct distances theorem. To understand the distinct distances

theorem of Guth and Katz, read Chapters 1–5 and 7–10. Chapter 7 reduces

the distinct distances problem to an incidence problem in R3. Chapter 8

introduces the constant-degree polynomial-partitioning technique and uses

it to prove incidence bounds in the complex plane. Chapter 9 extends this

technique and uses it to prove the distinct distances theorem. Chapter 10

studies a few variants of the distinct distances problem.

• Incidences and polynomial methods over finite fields. To study incidences

and polynomial methods over finite fields, read Chapters 6 and 13. You

might wish to first read Chapter 1, but this is not necessary. Chapter 13

studies point-line incidences over finite fields.

• Incidences in Rd . To understand advanced incidence techniques in Rd , read

Chapters 1–5, 8, 11, 12, and 14. Chapter 11 studies more advanced techniques

for deriving incidence bounds in Rd . Chapter 12 consists of applications

for such incidence bounds. Chapter 14 introduces more advanced tools for

studying incidences and related problems. In particular, this final chapter

studies properties of ruled surfaces.
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