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Incidences and Classical Discrete Geometry

My most striking contribution to geometry is, no doubt, my problem on the number

of distinct distances. This can be found in many of my papers on combinatorial and

geometric problems.

Paul Erdős, in a survey of his favorite contributions to mathematics, compiled for the

celebration of his 80th birthday (Erdős, 1993).

1.1 Introduction to Incidences

We begin our study of geometric incidences by surveying the field and deriving

a few first bounds. In this chapter we only discuss classical discrete geometry

from before the discovery of the new polynomial methods. This makes the

current chapter rather different from the rest of the book (outrageously, it even

includes some graph theory). We also learn basic tricks that are used throughout

the book, such as double counting, applying the Cauchy–Schwarz inequality,

and dyadic decomposition. These techniques are presented in full detail in this

chapter, while some details are omitted in the following chapters.

Consider a set P of points and a set L of lines, both in R2. An incidence

is a pair (p, ℓ) ∈ P × L such that the point p is contained in the line ℓ. We

denote the number of incidences in P × L as I (P,L). For example, Figure 1

(in the Introduction) depicts a configuration with nine incidences. For any

m and n, Erdős constructed a set P of m points and a set L of n lines

with Θ
(

m2/3n2/3
+ m + n

)

incidences. Erdős (1985) conjectured that no point-

line configuration has an asymptotically larger number of incidences. This

conjecture was proved by Szemerédi and Trotter in 1983.

Theorem 1.1 (The Szemerédi–Trotter theorem) Let P be a set of m points

and let L be a set of n lines, both in R2. Then I (P,L) = O
(

m2/3n2/3
+m + n

)

.
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2 Incidences and Classical Discrete Geometry

The original proof of the Szemeredi–Trotter theorem is rather involved. In

this chapter we present a later elegant proof by Székely (1997). A more general

algebraic proof is presented in Chapter 3.

Finding the maximum number of point-line incidences in R2 is one of the

simplest incidence problems. It is also one of very few incidence problems

that are solved asymptotically. Other problems involve incidences with circles

or other types of curves, incidences with varieties in Rd , with semi-algebraic

objects in Rd , in complex spaces Cd , in spaces over finite fields, and much

more. In each of these problems, we wish to find the maximum number of

incidences between a set of points and a set of geometric objects. If you ever

need to snub a discrete geometer, try pointing out how they can barely solve

any of these problems after decades of work.

One reason for studying incidence problems is that they are natural

combinatorial problems. Throughout this chapter, we start to see additional

reasons for studying incidence problems, including:

• Incidence problems are not purely combinatorial, but also require an

understanding of the underlying geometry. One example of this appears

in Section 1.5, where we introduce the unit distances problem. This problem

involves studying properties that distinguish the Euclidean metric from

almost all other distance metrics.

• Incidence results are also useful for problems that may not seem related

to geometry. In Section 1.8, we use incidences to study the sum-product

problem. This problem started as a number-theoretic problem that does not

involve any geometry.

1.2 First Proofs

We now develop some initial intuition about incidences. We begin by deriving

our first bound for an incidence problem. This is a weak bound, but it is still

useful in some cases.

Lemma 1.2 Let P be a set of m points and let L be a set of n lines, both in

R
2. Then I (P,L) = O(m

√
n + n) and I (P,L) = O(n

√
m + m).

Why do we say that Lemma 1.2 is weaker than Theorem 1.1? For some

intuition, consider the case where m = n. In this case, Theorem 1.1 leads to the

bound O(n4/3), while Lemma 1.2 only gives O
(

n3/2) .

Proof of Lemma 1.2 We only derive I (P,L) = O(m
√

n+ n). The other bound

is obtained in a symmetric manner. Consider the set of triples
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1.2 First Proofs 3

T =
{
(a, b, ℓ) ∈ P2 × L : a and b are both incident to ℓ

}
.

Note that T also contains triples (a, b, ℓ) where a = b.

Let m j be the number of points of P that are incident to the jth line of

L. Then the number of triples of T that include the jth line of L is m2
j
. This

implies that |T | = ∑n
j=1 m2

j
. Also, note that I (P,L) =

∑n
j=1 m j . We apply the

Cauchy–Schwarz inequality (Theorem A.1). We present this first application

of the inequality in full detail. Throughout the rest of the book, we skip the

intermediary steps. For 1 ≤ j ≤ n, we set a j = m j and bj = 1. The Cauchy–

Schwarz inequality implies that

n
∑

j=1

m j ≤ ��
�

n
∑

j=1

m2
j
��
	

1/2 ��
�

n
∑

j=1

1
��
	

1/2

=
��
�

n
∑

j=1

m2
j
��
	

1/2

· n1/2.

Squaring both sides and rearranging leads to

|T | =
n
∑

j=1

m2
j ≥

(

∑n
j=1 m j

)2

n
=

I (P,L)2

n
. (1.1)

The number of triples (a, b, ℓ) ∈ T with a = b is I (P,L). The number of

triples (a, b, ℓ) ∈ T with a � b is at most
(

m
2

)

, since each pair of distinct a,

b ∈ P is contained in at most one line of L . Thus, |T | ≤
(

m
2

)

+ I (P,L).

Combining this with Equation (1.1) gives

I (P,L)2

n
≤
(

m

2

)

+ I (P,L). (1.2)

When
(

m
2

)

≥ I (P,L), rearranging Equation (1.2) leads to I (P,L) =

O
(

mn1/2) . Otherwise, rearranging Equation (1.2) leads to I (P,L) = O(n). �

To prove Lemma 1.2, we used a common combinatorial method called double

counting. In this method, we bound some quantity X in two different ways and

then compare the two bounds. This leads to new information that does not

involve X . In the proof of Lemma 1.2, we derived upper and lower bounds for

the size of T . By comparing these two bounds, we obtained a bound for the

number of incidences. Double counting is ubiquitous in this book.

In the proof of Lemma 1.2, we did not use any geometry beyond observing

that two points are contained in one line. This implies that the proof still holds

after removing all the other geometric properties of the problem. That is, when

replacing the lines with abstract sets of points, such that every two sets have at
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4 Incidences and Classical Discrete Geometry

most one common element. For example, instead of the lines in Figure 1 (in the

Introduction), we can consider the sets

A = {a, d}, B = {a, c}, C = {a, d}, D = {b, c, d}.

In this abstract setting, the bounds of Lemma 1.2 are asymptotically tight. There

exist n subsets of m elements with the above property andΘ
(

mn1/2) incidences

(orΘ
(

nm1/2)). Thus, to derive a stronger upper bound for point-line incidences,

we must rely on additional geometric properties of lines.

We now consider an asymptotically tight lower bound for Theorem 1.1.

Instead of Erdős’s original construction, we present a simpler construction due

to Elekes (2001).

Claim 1.3 For every m and n there exist a set P of m points and a set L of n

lines, both in R2, such that I (P,L) = Θ
(

m2/3n2/3
+ m + n

)

.

Proof The term m dominates the boundΘ
(

m2/3n2/3
+m+n

)

when m = Ω
(

n2) .

In this case we can simply take m points on a single line to obtain m incidences.

Similarly, the term n dominates the bound when n = Ω
(

m2) . In this case we

take n lines that pass through a single point to obtain n incidences. It remains to

construct a configuration with Θ
(

m2/3n2/3) incidences when m = O
(

n2) and

n = O
(

m2) .

Let r =
(

m2/4n
)1/3

and s =
(

2n2/m
)1/3

(for simplicity, instead of taking the

ceiling function of s and r , we assume that these are integers). We set

P = { (i, j) : 1 ≤ i ≤ r and 1 ≤ j ≤ 2rs } ,

and

L = { y = ax + b : 1 ≤ a ≤ s and 1 ≤ b ≤ rs } .

Note that P is a rectangular section of the integer lattice. The slopes and

y-intercepts of the lines of L also form such a lattice. Figure 1.1 depicts an

example configuration rotated by 90◦. We also have that

|P | = 2r2s = 2 · m4/3

(4n)2/3
·
(

2n2)1/3

m1/3
= m,

Figure 1.1 Elekes’s construction, rotated by 90◦.
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1.3 The Crossing Lemma 5

and

|L| = rs2
=

m2/3

(4n)1/3
·
(

2n2)2/3

m2/3
= n.

Consider a line ℓ ∈ L that is defined by the equation y = ax + b. For any

x ∈ {1, . . . , r }, there exists y ∈ {1, . . . , 2rs} such that the point (x, y) is incident

to ℓ. That is, every line of L is incident to exactly r points of P, which in turn

implies that

I (P,L) = r · |L| = m2/3

(4n)1/3
· n = 2−2/3m2/3n2/3.

�

1.3 The Crossing Lemma

One elegant proof of Theorem 1.1 is based on the crossing lemma. We study

this proof in Section 1.4. Here, we first go over some required preliminaries.

For a brief review of graph theory notation, see Section A.2.

The crossing number of a graph G = (V, E), denoted cr(G), is the smallest

integer k such that we can draw G in the plane with k edge crossings.

Figure 1.2(a) depicts a drawing of K5 with a single crossing. Since K5 cannot

be drawn without crossings, we have that cr(K5) = 1. Intuitively, we expect

a graph with a lot more edges than vertices to have a large crossing number.

Given a graph G = (V, E), we are interested in a lower bound for cr(G) with

respect to |V | and |E |.

(a) (b)

Figure 1.2 (a) A drawing of K5 with a single crossing. (b) A graph with two

bounded faces and one unbounded face.

A graph G is planar if cr(G) = 0. We consider a connected planar graph

G = (V, E) with v vertices and e edges. More specifically, we consider a drawing

of G in the plane with no crossings. The faces of this drawing are the maximal

two-dimensional connected regions that are bounded by the edges. This includes

one outer, infinitely large region. For an example, see Figure 1.2(b). Denote by

f the number of faces in the drawing of G. Then Euler’s formula states that

v + f = e + 2. (1.3)
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6 Incidences and Classical Discrete Geometry

For planar graphs that are not connected, we instead have that v + f > e + 2.

Every edge of G is either on the boundary of two faces or has both of its

sides on the boundary of the same face. Moreover, the boundary of every face

of G consists of at least three edges. Thus, we have 2e ≥ 3 f . Plugging this into

Equation (1.3) yields

e ≤ v + f − 2 ≤ v +
2e

3
− 2.

That is, for any planar graph G = (V, E), we have that

|E | ≤ 3|V | − 6. (1.4)

The above leads to our first lower bound on cr(G).

Lemma 1.4 For any graph G = (V, E), we have cr(G) ≥ |E | − 3|V | + 6.

Proof Consider a drawing of G in the plane that minimizes the number of

crossings. Let E ′ ⊂ E be a maximum subset of the edges such that no two

edges of E ′ intersect in the drawing. By Equation (1.4), we have that |E ′ | ≤
3|V | − 6. Since every edge of E\E ′ intersects at least one edge of E ′, and

since |E\E ′ | ≥ |E | − 3|V | + 6, there are at least |E | − 3|V | + 6 crossings in the

drawing. �

Since K5 has 5 vertices and 10 edges, Lemma 1.4 gives the correct value

cr(K5) = 1. However, in general the bound of this lemma is rather weak. For

example, it is known that cr(Kn) = Θ
(

n4) , while Lemma 1.4 only implies that

cr(Kn) = Ω
(

n2) . We can amplify the lower bound of Lemma 1.4 by combining

it with a probabilistic argument. The following lemma was originally derived

in Ajtai et al. (1982); Leighton (1983), with different proofs.

Lemma 1.5 (The crossing lemma) Let G = (V, E) be a graph with |E | ≥
4|V |. Then cr(G) = Ω

(|E |3/|V |2) .

Proof Consider a drawing of G with cr(G) crossings. Set p =
4 |V |
|E | . The

assumption of the lemma implies that 0 < p ≤ 1. We remove every vertex

of V from the drawing with probability 1 − p (together with the edges adjacent

to the vertex). Let G′ = (V ′, E ′) denote the resulting subgraph. Let c′ denote

the number of crossings in the drawing of G that have both of their edges in E ′.

To avoid confusion with the edge set E, we denote expectation of a random

variable as E[·]. Since every vertex remains with probability p, we have that

E[|V ′ |] = p|V |. Since every edge remains if and only if its two endpoints

remain, we have that E[|E ′ |] = p2 |E |. Finally, since each crossing remains if

and only if the two corresponding edges remain, we have that E[c′] = p4cr(G).

By linearity of expectation,

www.cambridge.org/9781108832496
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1.4 Szemerédi–Trotter via the Crossing Lemma 7

E[c′ − |E ′ | + 3|V ′ |] = p4cr(G) − p2 |E | + 3p|V |

=

44 |V |4

|E |4
cr(G) − 42 |V |2

|E |2
· |E | + 3 · 4|V |

|E | · |V |

=

44 |V |4

|E |4
cr(G) − 4|V |2

|E | .

Since this is the expected value, there exists a subgraph G∗ = (V ∗, E∗) with

c∗ crossings remaining from the drawing of G, such that

c∗ − |E∗ | + 3|V ∗ | ≤ 44 |V |4

|E |4
cr(G) − 4|V |2

|E | . (1.5)

By Lemma 1.4, we have c∗ ≥ |E∗ |−3|V ∗ |+6. Combining this with Inequality

(1.5) implies

0 < 6 ≤ c∗ − |E∗ | + 3|V ∗ | ≤ 44 |V |4

|E |4
cr(G) − 4|V |2

|E | .

That is, 4 |V |2
|E | <

44 |V |4
|E |4 cr(G). Tidying up this inequality leads to the required

bound. �

Lemma 1.5 implies the asymptotically tight bound cr(Kn) = Ω
(

n4) .

1.4 Szemerédi–Trotter via the Crossing Lemma

We are now ready to prove Theorem 1.1. We first restate this theorem.

Theorem 1.1 Let P be a set of m points and let L be a set of n lines, both in

R
2. Then I (P,L) = O

(

m2/3n2/3
+ m + n

)

.

Proof We write L = {ℓ1, . . . , ℓn} and denote by m j the number of points of P
that are on ℓ j . Notice that I (P,L) =

∑n
j=1 m j . We may remove any line ℓ j that

satisfies m j = 0, since this would not change the number of incidences.

We build a graph G = (V, E) as follows. Every vertex of V corresponds to a

point of P. For v, u ∈ V , we add (v, u) to E if v and u correspond to consecutive

points along a line of L. For an example, see Figure 1.3. A line ℓ j contributes

exactly m j − 1 edges of E. Thus, we have |V | = m and |E | = ∑n
j=1(m j − 1) =

I (P,L) − n.

If |E | < 4|V | then I (P,L) = O(m+ n), which completes the proof. We may

thus assume that |E | ≥ 4|V |. Then, Lemma 1.5 leads to

cr(G) = Ω

(

(I (P,L) − n)3

m2

)

. (1.6)

www.cambridge.org/9781108832496
www.cambridge.org


Cambridge University Press
978-1-108-83249-6 — Polynomial Methods and Incidence Theory
Adam Sheffer 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Incidences and Classical Discrete Geometry

Figure 1.3 (Solid segment) The edges of the graph. (Dashed segment) The portions

of the lines ℓj that do not form graph edges.

We draw G according to the point-line configuration: Every vertex is at the

corresponding point and every edge is the corresponding line segment. Every

crossing in this drawing is an intersection of two lines of L. Since every two

lines intersect at most once, we have that cr(G) ≤
(

n
2

)

= O
(

n2) . Combining

this with Equation (1.6) implies that

(I (P,L) − n)3

m2
= O
(

n2) .

Rearranging this equation gives I (P,L) = O
(

m2/3n2/3
+ n
)

. �

The proof of Theorem 1.1 is another example of the double counting method.

We counted cr(G) in two different ways. By combining the two resulting

bounds, we obtained a bound on the number of incidences.

In the proof of Theorem 1.1, we used the geometric property that two lines

intersect at most once. This is similar to the observation that any two points

are contained in one line,1 which was used in the proof of Lemma 1.2. In the

proof of Theorem 1.1 we used a second geometric property when stating that

the line ℓ j corresponds to exactly m j − 1 edges of E. This statement relies on

the observation that a line consists of a single connected component and does

not intersect itself. When replacing the lines with other curves that satisfy the

same geometric properties, the proof of Theorem 1.1 remains valid.

1.5 The Unit Distances Problem

The unit distances problem is one of the main open problems in discrete

geometry. While it is extremely difficult to solve this problem, it easy to state:

In a set of n points in the plane, what is the maximum possible number of pairs

of points at distance 1 from each other?

1 These two geometric properties are equivalent when studying point-line incidences, due to
point-line duality. We discuss this concept in Section 1.10.
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1.5 The Unit Distances Problem 9

We denote this maximum number of pairs as u(n). By taking a set of n points

equally spaced on a line, we immediately obtain that u(n) ≥ n−1. Erdős (1946)

introduced the problem, while also deriving the bounds u(n) = O
(

n3/2) and

u(n) = Ω
(

n1+c/ log log n) , for some constant c. While many mathematicians have

studied this problem, the lower bound for u(n) has not been improved since

1946 and the upper bound was last improved in 1984. That was when Spencer

et al. (1984) derived the bound u(n) = O
(

n4/3) .

Consider a set P ⊂ R2 of n points such that the number of unit distances

between pairs of points of P is u(n). We draw a unit circle (a circle of radius

one) around each point of P, and denote the set of these n circles as C. Every

two points p, q ∈ P that determine a unit distance correspond to two incidences

in P × C: The circle around p is incident to q and vice versa. See Figure 1.4

for an example. Thus, to bound u(n) it suffices to bound the maximum number

of incidences between n points and n unit circles (it is not difficult to show that

this maximum number of incidences is asymptotically equivalent to u(n)).

Figure 1.4 Every two points that are at a unit distance correspond to two point-

circle incidences.

Theorem 1.6 Let P be a set of n points and let C be a set of n unit circles,

both in R2. Then I (P, C) = O
(

n4/3) .

Theorem 1.6 immediately implies the current best bound u(n) = O
(

n4/3) .

Proof of Theorem 1.6 We imitate the proof of Theorem 1.1. Let C =
{c1, . . . , cn} and let m j denote the number of points of P on cj . Note that

I (P, C) =
∑n

j=1 m j . We may remove any circle cj that satisfies m j < 3, since

this reduces the number of incidences by at most 2n.

We build a graph G = (V, E) as follows. Every vertex of V corresponds to a

point of P. For v, u ∈ V , the edge (v, u) is in E if v and u are consecutive points

along at least one circle of C. A circle cj corresponds to exactly m j edges of E,

and every edge originates from at most two unit circles. Note that |V | = n and

|E | ≥ ( ∑n
j=1 m j

)

/2 = I (P, C)/2.

If |E | < 4|V | then I (P, C) = O(n), which completes the proof. We may thus

assume that |E | ≥ 4|V |. By Lemma 1.5, we have that

cr(G) = Ω

(

I (P, C)3

n2

)

. (1.7)
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10 Incidences and Classical Discrete Geometry

We draw G according to the point-circle configuration: Every vertex is at

the corresponding point and every edge is one of the corresponding circle arcs.

Every crossing in this drawing is the intersection of two circles of C. Since

every two circles intersect at most twice, we have that cr(G) ≤ 2
(

n
2

)

= O
(

n2) .

Combining this with Equation (1.7) implies that

I (P, C)3

n2
= O
(

n2) .

Rearranging this equation leads to I (P, C) = O
(

n4/3) . �

Erdős offered $250 for proving the following conjecture (Erdős, 1985).

Conjecture 1.7 (Erdős, 1985) u(n) = O
(

n1+ε) for any ε > 0.

This is an example of how little we currently know about incidences. While

the problem of point-line incidences in R2 has been settled for decades, the

case of unit circles remains wide open. Hardly any other incidence problems

have been solved.

The answer to the unit distances problem significantly depends on the metric:

• For Euclidean distance, this is a long-standing difficult problem.

• For some metrics, there exist sets of n points that span Θ
(

n2) unit distances.

See Exercise 1.3.

• Valtr (2005) discovered a well-behaved metric for which u(n) = Θ
(

n4/3) .

• Matoušek (2011) showed that, for most metrics,2 u(n) = O(n log n log log n).

The bound that is conjectured for the Euclidean distance is different from all

other bounds stated above. One may thus say that the unit distances problem is

about studying properties of the underlying geometry. A proof of Conjecture

1.7 is likely to require properties that are unique for the Euclidean metric.

1.6 The Distinct Distances Problem

The distinct distances problem is a close relative of the unit distances problem.

Both problems were introduced in the same 1946 paper of Erdős. For a set

P ⊂ R2, let ∆(P) denote the set of distances spanned by pairs of points of P.

Every distance appears in ∆(P) at most once, no matter how many pairs of

points span it. This is why we refer to ∆(P) as the set of distinct distances

of P. See Figure 1.5 for an example. The distinct distances problem asks for

min |P |=n |D(P) |. In other words:

2 The exact meaning of “most metrics” is beyond the scope of this chapter.
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