1

2

Cambridge University Press 978-1-108-83237-3 — Edge Learning for Distributed Big Data Analytics Song Guo , Zhihao Qu Table of Contents <u>More Information</u>

Contents

List	t of Figures p		
List	t of Tables	xi	
Intro	oduction	1	
1.1	Background	1	
1.2	From Cloud Learning to Edge Learning		
	1.2.1 From Cloud Computing to Edge Computing	2	
	1.2.2 From Distributed Machine Learning to Edge Learning	3	
1.3	Edge Learning and Edge Intelligence		
1.4	Challenges of Edge Learning	5	
	1.4.1 Hard to Train Due to Constrained and Heterogeneous		
	Edge Resources	6	
	1.4.2 Hard to Protect Due to Vulnerable Edge Devices	7	
	1.4.3 Hard to Manage Due to Complex Edge Environment	8	
	1.4.4 Hard to Collaborate Due to Lack of Participant	8	
1.5	The Scope and Organization of This Book	9	
Preli	liminary	11	
2.1	Background of Edge Computing	11	
	2.1.1 Edge Computing Paradigms	11	
2.2	Deep Learning Models and Collaborative Training Approaches	14	
	2.2.1 Deep Learning Models	14	
	2.2.2 Collaborative Training Approaches	15	
2.3	Basic Machine Learning Algorithms	16	
	2.3.1 Learning Problem Statement	16	
	2.3.2 Basic Machine Learning Algorithms	17	
2.4			
2.5	Synchronization Modes		
	2.5.1 Bulk Synchronous Parallel (BSP)	23	
	2.5.2 Asynchronous Parallel (ASP)	23	
	2.5.3 Stale Synchronous Parallel (SSP)	23	

Cambridge University Press 978-1-108-83237-3 — Edge Learning for Distributed Big Data Analytics Song Guo , Zhihao Qu Table of Contents <u>More Information</u>

vi	Cont	ents			
3	Fund	damental Theory and Algorithms of Edge Learning	24		
	3.1	Distributed Machine Learning and the Convergence Theory	24		
	3.2	Advanced Training Algorithm and Corresponding Theory	27		
		3.2.1 Regularization and Loss Function	27		
		3.2.2 Direction Based Optimization	29		
		3.2.3 Algorithms Based on Hyper-Parameters	32		
		3.2.4 Co-designed Algorithms	34		
		3.2.5 Optimization Algorithms for DNN	37		
	3.3	Theoretical Framework for Flexible Synchronization in Edge Learning	38		
4	Com	munication-Efficient Edge Learning	42		
	4.1	Introduction to Communication-Efficient Edge Learning	42		
	4.2	Communication Data Compression in Edge Learning	43		
		4.2.1 Quantization	43		
		4.2.2 Sparsification	46		
		4.2.3 Low Rank	48		
		4.2.4 Error Compensation Techniques for Communication	10		
		Compression	48		
	4.2	4.2.5 Communication Compression in Decentralized Training	50		
	4.3	Lazy Synchronization	51 51		
		4.3.1 Large Batch Size4.3.2 Periodic Averaging	52		
		4.3.3 Fine-Grained Aggregation	52		
		4.3.4 A Communication-Efficient Edge Learning	52		
		Framework with Quantized and Period Averaging	53		
	4.4		57		
		4.4.1 Algorithm Description	58		
		4.4.2 Theoretical Results	60		
	4.5	Wireless Network Optimization for Edge Learning	62		
		4.5.1 Scheduling Policy for Communication-Efficient Edge			
		Learning in Wireless Environments	63		
		4.5.2 MIMO and Over-the-Air Computation for Fast			
		Aggregation in Edge Learning	66		
	4.6	Conclusion and Future Directions	70		
		4.6.1 Two-Pass Compression Method for Edge Learning	71		
		4.6.2 Gradient Compression Robust to Byzantine Workers	71		
		4.6.3 Communication Compression for Two-Order			
		Optimization Algorithm	72		
5	Computation Acceleration				
	5.1	Introduction to Computation Acceleration	73		
	5.2	Model Compression and Hardware Acceleration	74		
		5.2.1 model compression	74		
		5.2.2 Hardware Acceleration	79		

CAMBRIDGE

Cambridge University Press 978-1-108-83237-3 — Edge Learning for Distributed Big Data Analytics Song Guo , Zhihao Qu Table of Contents <u>More Information</u>

		Contents	vii	
	5.3	Straggler Tolerance	82	
		5.3.1 Framework of Gradient Coding	83	
		5.3.2 Construction Encoding and Decoding Matrix	84	
		5.3.3 Construct B in the General Case	87	
		5.3.4 Recent Methods of Gradient Coding	90	
	5.4	1 8	91	
		5.4.1 Key Performance Indicators in Inference	91	
		5.4.2 Enabling Technologies for Inference	92	
	5.5	Conclusion and Future Directions	95	
		5.5.1 Jointly Optimize Learning Algorithm and Hardware		
		Implementation in Edge Environments	95	
		5.5.2 Green and Sustainable Model Training among		
		Heterogeneous Hardware Platforms	96	
		5.5.3 Approximate Gradient Coding to Deal with Stragglers	97	
6	Effic	cient Training with Heterogeneous Data Distribution	98	
	6.1	Introduction to Federated Learning	98	
	6.2	Training with Non-IID Data	101	
		6.2.1 What Does Non-IID Mean?	102	
		6.2.2 Enabling Technologies for Training Non-IID Data	102	
	6.3	Conclusion and Future Directions	107	
		6.3.1 Tackle the Non-IID Data via Learning-based Data Selection	108	
		6.3.2 Adaptive Parameter Setting for Non-IID Data	109	
		6.3.3 Straggler-Tolerant Federated Learning Algorithms	110	
7	Secu	ecurity and Privacy Issues in Edge Learning Systems		
	7.1	Security Guarantee	112	
		7.1.1 Data-Oriented Attacks	113	
		7.1.2 Defense Technologies for Data-Oriented Attacks	116	
		7.1.3 Model-Oriented Attacks	119	
		7.1.4 Defense Technologies for Model-Oriented Attacks	120	
	7.2	Privacy Protection	121	
		7.2.1 Introduction to Privacy Attacks in Edge Learning	121	
		7.2.2 Enabling Technologies for Private Edge Learning	122	
	7.3	Conclusion and Future Directions	128	
		7.3.1 Multi-level Privacy-Protection for Efficient Edge Learning	128	
		7.3.2 Hierarchical Outlier Detection for Security Guarantee	128	
		7.3.3 Attack Detection in Communication-Compressed Training	130	
		7.3.4 Computation Offloading for Encrypted Data Training	130	
8	Edge	e Learning Architecture Design for System Scalability	131	
	8.1	Introduction to the Learning Architecture	131	
		8.1.1 Parallelism Schemes: Data Parallelism and Model Parallelism	n 131	

CAMBRIDGE

Cambridge University Press 978-1-108-83237-3 — Edge Learning for Distributed Big Data Analytics Song Guo , Zhihao Qu Table of Contents <u>More Information</u>

viii	Cont	ents	
		8.1.2 Large-Scale Model Training Architecture	137
	8.2	Edge Learning Frameworks over the Hierarchical Architecture	139
		8.2.1 Introduction to the Hierarchical Architecture	140
		8.2.2 Community-Based Synchronization Parallel over the	
		Hierarchical Architecture	143
		8.2.3 Convergence Rate of Community-Based	
		Synchronization Parallel	145
	8.3	Extension of Community-Based Synchronization Parallel	150
		8.3.1 A Hybrid Synchronization Mechanism over the	
		Hierarchical Architecture	150
		8.3.2 Abstract of Community and Communication-Aware	
		Parameter Servers	151
		8.3.3 Convergence Result of Hybrid Community-Based	1.50
		Synchronization Parallel	152
	8.4	Conclusion and Future Directions	157
9	Ince	ntive Mechanisms in Edge Learning Systems	159
	9.1	Fundamental Theory of Incentive Mechanisms	159
	9.2	Related Works	161
		9.2.1 Incentive Mechanisms	161
		9.2.2 Incentive Mechanisms for Edge Learning	161
	9.3	A Learning-Based Incentive Mechanism for Edge Learning	162
		9.3.1 Problem Description	164
		9.3.2 System Model	165
		9.3.3 Equilibrium Analysis	166
		9.3.4 A Deep Reinforcement Learning-Based Incentive Mechanism	168
	9.4	Conclusion and Future Directions	169
10	Edge	e Learning Applications	171
	10.1	APIs, Libraries, and Platforms for Edge Learning	171
		10.1.1 General Programming Frameworks for Machine Learning	171
	10.2	Application Scenarios	175
		10.2.1 Smart Transportation	175
		10.2.2 Smart Healthcare	179
		10.2.3 Intelligent Blockchain + Edge AI	180
		10.2.4 Intelligent Financial Risk Control	182
		10.2.5 Edge AI + IoT	184
		10.2.6 Virtual Reality	186
	10.3	The Dr. Body System for Posture Detection and Rehabilitation Tracking	188
	Bibl	iography	190
	Inde		215
			-