Index

absolute value, 326
archimedean, 326
discrete, 327
non-archimedean, 326
normalised, 327
adèle ring, 331
strong approximation, 332
adelic height, 282
standard, 282
adelic norm, 281
associated adelic height, 282
affine k-group scheme, 302
algebra of distributions, 307
Lie algebra of, 307
affine n-space, 301
affine scheme, 300
of finite type, 301
algebra, 18
central, 30
crossed-product, 34
 cyclic, 35
simple, 29
algebraic k-group, 302
arithmetic group, 175
derived group, 323
diagonalisable, 319
geometric radical, 322
geometric unipotent radical, 322
inner form of, 325
k-rank, 323
Levi subgroup, 322
multiplicative, 320
outer form of, 325
reductive, 322
S-arithmetic group, 175
semi-simple, 322
semi-simple k-rank, 323
smooth, 307
split, 323
unipotent, 317
algebraic k-torus, 321
ℓ-anisotropic, 212, 321
ℓ-isotropic, 212, 321
ℓ-split, 212, 321
dimension, 321
induced, 214
algebraic group, 302
anisotropic, 323
isotropic, 323
algebraic number field
 class number, 94
decomposed place, 234
non-decomposed place, 234
annihilator, 15
arithmetic group, 175
arithmetic \mathbb{Q}_L-lattice, 159
degree, 164
homomorphism, 160
isomorphism, 160
rank, 159
semi-stable, 165
shift \mathbb{Q}_L-lattice, 163
slope, 165
stable, 165
trivial, 164
unstable, 165
Artinian module, 5
Artinian ring, 5
automorphism of Cartan type, 267
base change, 301
Bianchi group, 124
fundamental domain, 131
geometric cycles, 254
minimal incidence set, 135
point at infinity, 125
reduction theory, 126
binary quadratic form
discriminant, 72
negative definite, 71
Index

<table>
<thead>
<tr>
<th>Binary Quadratic Form (cont.)</th>
<th>Character</th>
<th>Dedekind Domain</th>
<th>Elementary Divisor Theorem</th>
<th>Elementary Matrix</th>
<th>Euclidean (\mathbb{Z})-Lattice</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Definite, 71</td>
<td>of Algebraic (k)-Group, 305</td>
<td>Degree (of Algebra), 32</td>
<td>17</td>
<td>47</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Proper Equivalence, 72</td>
<td>Group, 305</td>
<td>Adjoint Involution, 197</td>
<td>18</td>
<td>157</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Reduced, 73</td>
<td>Characteristic Polynomial, 38</td>
<td>Anisotropic Subspace, 196</td>
<td>18</td>
<td>157</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Brauer Group, 32</td>
<td>Group, 196</td>
<td>Isometry, 196</td>
<td>18</td>
<td>157</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Relative, 32</td>
<td>Isotropic Subspace, 196</td>
<td>Isotropic Vector, 196</td>
<td>Non-Degenerate, 196</td>
<td>153</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Chinese Remainder Theorem, 23</td>
<td>Discrete Valuation Ring, 20</td>
<td>Divisor Class Group, 95</td>
<td>18</td>
<td>153</td>
<td>153</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Character Group, 305</th>
<th>Dedekind Domain</th>
<th>Elementary Divisor Theorem</th>
<th>Elementary Matrix</th>
<th>Euclidean (\mathbb{Z})-Lattice</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local, 327</td>
<td>Dedekind Domain, 21</td>
<td>Degree (of Algebra), 32</td>
<td>17</td>
<td>47</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Valued, 326</td>
<td>Brauer Group, 32</td>
<td>Adjoint Involution, 197</td>
<td>18</td>
<td>157</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Function Field, 94</td>
<td>Character Group, 305</td>
<td>Anisotropic Subspace, 196</td>
<td>18</td>
<td>157</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Degree of Divisor, 95</td>
<td>Dedekind Domain, 21</td>
<td>Isometry, 196</td>
<td>Non-Degenerate, 196</td>
<td>153</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Divisor Class Group, 96</td>
<td>Brauer Group, 32</td>
<td>Isotropic Subspace, 196</td>
<td>18</td>
<td>157</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Field of Constants, 94</td>
<td>Dedekind Domain, 21</td>
<td>Isotropic Vector, 196</td>
<td>Non-Degenerate, 196</td>
<td>153</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Group of (S)-Divisors, 96</td>
<td>Dedekind Domain, 21</td>
<td>Non-Degenerate, 196</td>
<td>Non-Degenerate, 196</td>
<td>153</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Rational, 95</td>
<td>Dedekind Domain, 21</td>
<td>Non-Degenerate, 196</td>
<td>Non-Degenerate, 196</td>
<td>153</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Dedekind Domain, 21</td>
<td>Dedekind Domain, 21</td>
<td>Non-Degenerate, 196</td>
<td>Non-Degenerate, 196</td>
<td>153</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Dedekind Domain, 21</td>
<td>Dedekind Domain, 21</td>
<td>Non-Degenerate, 196</td>
<td>Non-Degenerate, 196</td>
<td>153</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Dedekind Domain, 21</td>
<td>Dedekind Domain, 21</td>
<td>Non-Degenerate, 196</td>
<td>Non-Degenerate, 196</td>
<td>153</td>
<td>153</td>
<td>300</td>
</tr>
<tr>
<td>Dedekind Domain, 21</td>
<td>Dedekind Domain, 21</td>
<td>Non-Degenerate, 196</td>
<td>Non-Degenerate, 196</td>
<td>153</td>
<td>153</td>
<td>300</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press & Assessment

www.cambridge.org
Index

integral at a prime ideal, 91
integral closure, 19
integral element, 19
integral ring extension, 19
intersection
 perfect, 246
 transversal, 247
intersection number, 246
involution, 191
 exchange involution, 192
 of the first kind, 192
 of the second kind, 192

k-algebra
 simple of unitary type, 193
k-group scheme
 diagonalisable, 319
 fibre product, 306
 fixed point functor, 308
 flat, 302
 G-module, 309
 G-submodule, 310
 general linear group, 303
 intersection, 307
 product, 307
 representation, 309
 semi-direct product, 309
 special linear group, 303
 trivial, 306
Kleinian group, 123

lattice, 16
 complete, 16
 Euclidean, 153
 primitive system, 75
 primitive vector, 75
 rank, 16
lattice in Euclidean space, 79
 fundamental parallelepiped, 80
 volume, 81
length of a module, 6
local field, 327
localisation, 12

Mahler's compactness criterion, 150, 287
Mennicke symbol, 65
minimum polynomial, 39
modular group, 87
module
 Artinian, 5
 finitely generated, 5
 finitely presented, 5
 free, 4
 Noetherian, 5
 projective, 7
 torsion-free, 15

neat, 119
norm, 38
 reduced, 40
order, 37
parabolic group
 Levi decomposition, 323
positive definite quadratic form
 reduced basis, 76
 reduced in the sense of Minkowski, 76
 successive minima, 76
primitive system, 75
principal congruence subgroup, 47
q-elementary matrix, 47
quaternion algebra, 37, 135
 ramification set, 136
reductive algebraic k-group, 322
restricted topological product, 331
restriction of scalars, 314
ring
 of adeles, 331
 Artinian, 5
 dimension of, 21
 of fractions, 10
 of integers, 20
 integrally closed, 19
 local, 9, 61
 Noetherian, 5
 of principal adeles, 331
 of S-integers, 92
 semi-local, 61
S-adele ring, 334
S-arithmetic group, 175
S-integers, 334
S-units, 334
saturation, 11
 Schur index, 32
 semi-direct product, 309
 semi-local, 59
Siegel set, 147
similar algebras, 31
Skolem–Noether Theorem, 30
special cycle, 249
special linear group
 k-group scheme, 303
splitting field, 32
stable range, 54
strong approximation, 115
sublattice
 pure, 16
 submodule
 primitive, 17
 saturated, 11
Symplectic groups, 184
 geometric cycles, 255
topological group, 335
 locally compact, 338
 proper action, 343
topological space
 compact, 338
 locally compact, 338
topological transformation group
 free action, 340
 left-action, right-action, 339
 orbit space, 339
 proper action, 343
 transitive action, 340
torsion element, 15
torsion submodule, 15

Index

trace, 38
 reduced, 40
unimodular element, 53
 reducible, 53
valuation, 326
 archimedean, 326
 discrete, 327
 exponential, 329
 non-archimedean, 326
Wedderburn structure theorem, 30
Weil restriction, 314